Geology (GEO)

Major and Minor in Geology

Department of Geosciences, College of Arts and Sciences

Chairperson: Richard J. Reeder Director of Undergraduate Studies: Hanna Nekvasil

Major Advisor: Timothy Glotch

EMAIL: Timothy.Glotch@stonybrook.edu

Office: 255 Earth and Space Sciences
Phone: (631) 632-8200

Web Address: http://www.geosciences.stonybrook.edu

Minors of particular interest to students majoring in Geology and Earth and Space Sciences: Environmental Studies (ENS), Marine Sciences (MAR), engineering minors

Geology (GEO)

The Department of Geosciences offers two undergraduate programs: the Geology major, leading to a Bachelor of Science degree, and the Earth and Space Sciences major, leading to a Bachelor of Arts degree. Minimum course requirements for the B.S. program in Geology are detailed below. For requirements for the B.A. program in Earth and Space Sciences, see the entry in the alphabetical listing of Approved Majors, Minors, and Programs. Upon declaring the major, the student is assigned a faculty advisor who will assist in the selection of a course sequence leading to the degree. Students should consult frequently with their faculty advisors regarding their progress and regarding appropriate science courses. Because the position of the scientist in society is responsible and complex, the student is cautioned to pay careful attention to general education in the arts, humanities, and social sciences.

Geology

The science of geology is focused on evaluation of the physical and chemical characteristics of the Earth and other planets and the processes that have controlled evolution of these characteristics over time. The B.S. program has built-in flexibility to allow majors to choose from a variety of electives in environmental geoscience, planetary geoscience, geophysics and geochemistry. This allows students to develop a major that best reflects their interests and career goals, by allowing students to build upon the core curriculum by selecting 15 credits of upper-level science/mathematics electives from both within and outside of the Geosciences. The major aims to provide the student with maximum preparation to carry out graduate and professional work in each of these fields. Students graduating with a B.S. in Geology typically go on to graduate school or obtain professional employment with environmental consulting firms or various government organizations.

Requirements for the Major and Minor in Geology

Requirements for the Major

The major in Geology leads to the Bachelor of Science degree. All courses offered for the major must be passed with a letter grade of C or higher.

Completion of the major requires 65 to 68 credits.

A. Required departmental courses

GEO 103 The Earth Through Time
GEO 113 Historical Geology Laboratory
GEO 122 Physical Geology or GEO 102 The Earth and GEO 112 Physical Geology Laboratory
GEO 306 Mineralogy
GEO 309 Structural Geology
GEO 403 Sedimentation and Stratigraphy
GEO 407 Igneous and Metamorphic Petrology

B. Required courses in the related sciences

MAT 131, 132 Calculus I, II(See Note 1 below)
CHE 131, 132 General Chemistry or CHE 141, 142 Honors Chemistry
PHY 131/133, 132/134 Classical Physics I, II and labs or PHY 141, 142 Honors Physics

C. Related science electives

A set of upper-division science courses, totaling 20 credits, that has been approved by the department.

D. Upper-Division Writing Requirement
All students majoring in Geology must submit two papers (term papers, laboratory reports, or independent research papers) to the director of undergraduate studies for Department evaluation by the end of the junior year. If this evaluation is satisfactory, the student will have fulfilled the upper-division writing requirement. If it is not, the student must fulfill the requirement before graduation.

Notes:

1. The following alternate beginning calculus sequences may be substituted for MAT 131, 132 in major requirements or prerequisites: MAT 125, 126, 127 or 141, 142 or 171. Equivalency for MAT courses achieved by earning the appropriate score on a University mathematics placement examination will be accepted as fulfillment of the requirement without the necessity of substituting other credits. For detailed information about the various calculus sequences, see "Beginning Mathematics Courses" under the entry for the Department of Mathematics and the individual course descriptions.

Suggested Clusters of Science Electives:

Students with interest in Geology:

GEO 310 Introduction to Geophysics
GEO 315 Groundwater Hydrology
GEO 320 Glacial Geology
GEO 405 Field Camp
GEO 487 Senior Research in Geology

Students with interest in Environmental Geoscience:

GEO 305 Field Geology
GEO 315 Groundwater Hydrology
GEO 316 Geochemistry of Surficial Processes
GEO 420 Environmental Analysis and Remote Sensing/GIS
MAR 340 Environmental Problems

Students with interest in Geological Oceanography:

GEO 310 Introduction to Geophysics
GEO 316 Geochemistry of Surficial Processes
GEO 318 Engineering Geology and Coastal Processes
GEO 353 Marine Ecology
MAR 304 Waves, Tides, and Beaches

Honors Program in Geology

Students in the Geology major who have maintained a grade point average of 3.50 in natural sciences and mathematics through the junior year may become candidates for Departmental honors in Geology by applying to the Department.

In addition to the academic program, the student must complete an honors thesis, which is evaluated by a committee composed of the student's advisor and two other science faculty members including one from outside of the Department. If the honors program is completed with distinction and the student has maintained a minimum 3.50 grade point average in all coursework in natural sciences and mathematics, honors are conferred.

Requirements for the Minor

For students majoring in other areas who are interested in obtaining a fundamental understanding of the earth sciences, a minor concentration in Geology is available. The Geology minor acquaints students with earth materials, the origin and evolution of life on earth, and physical processes that have shaped the earth through time.

All courses offered for the minor must be passed with a letter grade of C or higher. Completion of the minor requires 20 credits.

Geology

GEO 103 and 113
GEO 122 Physical Geology or GEO 102 The Earth and GEO 112 Physical Geology Laboratory

Twelve additional credits from among GEO courses numbered 300 or higher. Courses must be approved by a departmental advisor.

Sample Course Sequence for the Major in Geosciences

<table>
<thead>
<tr>
<th>Freshman Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year Seminar 101</td>
<td>1</td>
<td>First Year Seminar 102</td>
<td>1</td>
</tr>
<tr>
<td>D.E.C. A</td>
<td>3</td>
<td>D.E.C. A</td>
<td>3</td>
</tr>
<tr>
<td>CHE 131</td>
<td>4</td>
<td>CHE 132</td>
<td>4</td>
</tr>
<tr>
<td>GEO 102</td>
<td>3</td>
<td>MAT 131</td>
<td>4</td>
</tr>
<tr>
<td>Course</td>
<td>Credits</td>
<td>Course</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>GEO 112</td>
<td>1</td>
<td>GEO 103</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
<td>GEO 113</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore Fall</td>
<td></td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>MAT 132</td>
<td>4</td>
<td>GEO 306</td>
<td>4</td>
</tr>
<tr>
<td>PHY 131/133</td>
<td>4</td>
<td>PHY 132/134</td>
<td>4</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 407</td>
<td>3</td>
<td>GEO 309</td>
<td>4</td>
</tr>
<tr>
<td>GEO 403</td>
<td>4</td>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>D.E.C.</td>
<td>3</td>
<td>D.E.C.</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 310</td>
<td>3</td>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
<td>Upper Division Elective</td>
<td>3</td>
</tr>
<tr>
<td>Upper Division Elective</td>
<td>3</td>
<td>Upper Division Elective</td>
<td>3</td>
</tr>
<tr>
<td>Upper Division Elective</td>
<td>3</td>
<td>Upper Division Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>
Advisory Prerequisite: High School Earth Science
3 credits

GEO 107 - E: Natural Hazards
An introduction to the concepts, techniques, and scientific methods used in the earth sciences. The natural hazards posed by earthquakes and volcanic eruptions are used as a focus. These phenomena are examined in the context of the theory of plate tectonics to determine their cause, destructive potential, and the possibility of predicting and controlling their occurrence. Elementary probability methods are introduced in the treatment of approaches to prediction. Societal responses to forecasts are also considered.
3 credits

GEO 109 - E: Life Through Time
An examination of biodiversity as preserved in the fossil record and how it contributes to the understanding of evolution. Species examined include invertebrates, plants, dinosaurs, and mammals and the ultimate origin and evolution of humans. Principles of evolution, paleontology, phylogeny reconstruction, and conservation are discussed. This course is offered as both GEO 109 and HBA 109.
3 credits

GEO 112: Physical Geology Laboratory
Rock and mineral identification, introduction to topographic and geologic maps.
Pre- or Corequisite: GEO 102
1 credit

GEO 113: Historical Geology Laboratory
An introduction to basic techniques used for interpreting geological history. Topics include interpretation of topographic and geological maps and cross sections, introduction to fossils, and basic stratigraphic techniques. One three-hour laboratory per week.
Pre- or Corequisite: GEO 103
1 credit

GEO 121: Principles of Geology
Course offered in conjunction with Sayville High School.
4 credits

GEO 122 - E: Physical Geology
The nature of the earth and of the processes that shape it: the earth's external and internal energy; minerals and rocks; external processes and the evolution of the landscape; internal processes and the structure of the earth; the earth compared with other planets; sources of materials and energy. Laboratory includes study of minerals and rocks; landforms as shown on topographical maps and aerial photographs; geologic structures inferred from maps and block diagrams; problem sets. Two lectures and one three-hour laboratory and recitation per week. GEO 102/112 and GEO 122 may not both be taken for credit.
Advisory Prerequisite: High school chemistry or CHE 123
4 credits

GEO 287: Introductory Research in Geology
Independent research, under the supervision of a faculty member, at a level appropriate to lower-division students.
Prerequisites: U1 or U2 standing; one GEO course; permission of instructor and departmental research coordinator 0-3 credits, S/U grading

GEO 301 - H: Sustainability of the Long Island Pine Barrens
The ecologically diverse Long Island Pine Barrens region provides a habitat for a large number of rare and endangered species, but faces challenges associated with protection of a natural ecosystem that lies in close proximity to an economically vibrant urban area that exerts intense development pressure. In this course we will consider the interaction of the ecological, developmental and economic factors that impact the Pine Barrens and the effectiveness of decision support systems in promoting sustainability of the Pine Barrens. This course is offered as BIO 301, GEO 301, ECO 301, and ESG 301.
Prerequisites: BIO 201 or ECO 108 or GEO 101 or 102 or ESG 100 or ESG 198 or CHE 131; and upper division status
3 credits

GEO 302: GIS For Geologists
A practical introduction to geographic information system GIS software. Participants learn to use direct measurement and mathematical techniques to compute the location of features and gain practical experience in rendering imagery and tabular geographic data as layers on maps. The course consists of two three-hour sessions per week for first five weeks of semester, which include fieldwork, lectures, demonstrations and software-based analysis of data. This course meets with GEO 305 Field Geology for the first five weeks of the term Students cannot take both GEO 302 and GEO 305 for credit.
Prerequisites: GEO 122, or GEO 102 and 112; GEO 103 and 113, or GEO 101 and 111
A survey of the origin, distribution, and importance to modern civilization of the fuels and minerals won from the earth. Geology of mineral resources and problems of finding, extracting, and supplying fossil fuels, metallic ores, water, and non-metallic commodities to industry and community as well as the ultimate limits of their abundances. Environmental concerns related to the exploitation of mineral resources with review of legislation and other steps being taken to minimize environmental damage.
Prerequisite: GEO 101 or 102 or 112
Advisory Prerequisite: CHE 123 or high school chemistry
3 credits

GEO 305: Field Geology
Geological field studies on and near the Stony Brook campus. Labs emphasize mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analyses and mapping. Course consists of two three-hour sessions per week, divided between lecture and outdoor labs.
Prerequisites: GEO 102/112 or GEO 112 and 103 and 113 or GEO 112 and 101 and 111
3 credits

GEO 306: Mineralogy
Topics include basic crystallography, crystal chemistry, and identification of the important rock-forming and ore minerals. Included are the fundamentals of optical crystallography: indices of refraction, isotropic, uniaxial, and biaxial minerals; optical indicatrix theory and interference figures. Laboratory exercises involve work with crystallographic models, mineral samples, refraction oils and the polarizing light microscope. Three hours of lecture and one three-hour laboratory per week.
Prerequisites: GEO 102 and 112; CHE 131
4 credits

GEO 309: Structural Geology
Principles of structural geology, including classification, criteria for recognition, and mechanics of formation of crustal structural features. Elementary concepts of rock mechanics. Discussion of important tectonic features of the continents and oceans. Accompanying laboratory to cover map interpretation and algebraic and graphical solutions of structural problems. Three hours of lecture and one three-hour laboratory per week. A two-day weekend field trip visits “classic” structural localities in the East.
Prerequisites: GEO 122, or GEO 102 and 112; one semester of calculus; PHY 121/123 or 131/133 or 141 or PHY 125 and 126
4 credits

GEO 310: Introduction to Geophysics
An introduction to theoretical and applied geophysics. Topics in global geophysics include seismology, gravity, geomagnetics and heat flow, with applications to the structure and dynamics of the earth’s interior. Students conduct computer-based analysis of geophysical data, some of which they collect using techniques of geophysical exploration and environmental geology. Three hours of lecture per week, plus group field experiments and analysis.
Prerequisites: MAT 127 or 132 or 142 or 171 or AMS 161; GEO 122, or GEO 102 and 112; PHY 122/124 or 132/134 or 142, or PHY 126 and 127
3 credits

GEO 311 - H: Geoscience and Global Concerns
An exploration of how technologically-based problems facing the United States and the world are related to the basic scientific principles that explain the properties of the lithosphere, hydrosphere, and atmosphere. The set of issues include such geoscience-based topics as global warming, fossil fuel resources, nuclear waste disposal, and earthquake prediction and preparedness.
Prerequisite: GEO 101 or 102 or 107 or 122
3 credits

GEO 315: Groundwater Hydrology
Physical and chemical principles of hydrogeology. Concepts of groundwater geology. Introduction to quantitative models of regional fluid flow and groundwater contamination. Groundwater and geologic processes, with examples from tectonics, petroleum geology, geothermics, and economic mineralization.
Prerequisites: GEO 102 or GEO 122; MAT 127 or MAT 132 or MAT 142 or MAT 171 or AMS 161
3 credits

GEO 316: Geochemistry of Surficial Processes
Chemical principles used in the study of surface and near-surface water, rocks, and soils. Application of equilibrium concepts and reaction rates to reactions involving gases, fluids, and minerals in nature. Consideration of soil properties and processes.
Prerequisites: GEO 122, or 102 and 112; CHE 132 or 142
4 credits

GEO 318: Engineering Geology and Coastal Processes
Fundamental concepts of soil, sediment, and rock mechanics and the physics of surficial processes. Application is made to problems of geotechnical and coastal engineering. Topics include consolidation, loose boundary hydraulics, slope stability, underground excavations and beach and tidal inlet stability, and channel sedimentation. This course is offered as both GEO 318 and MAR 318.
Prerequisites: GEO 122 or GEO 102 and 112; MAT 127 or 132 or 142 or 171 or AMS 161
3 credits

GEO 320 - E: Glacial Geology
History of glaciation on earth; formation and dynamics of glaciers and ice sheets; processes of glacial erosion and deposition; and the nature of glacial sediments and landforms particularly relating to the development of Long Island.
Prerequisite: GEO 102 or 122
3 credits

GEO 330: The Geology of Mars
Overview of Mars as a planetary system. Evolution of the planet and its atmosphere through time. Detailed discussion of processes that have shaped the martian surface, including erosion, sedimentation, volcanism, impact cratering, physical and chemical weathering. Comparison of geologic processes on Mars and Earth. Discussion of past and future spacecraft missions to Mars.
Prerequisite: GEO 102 or GEO 122 or GEO 106
Advisory Prerequisite: GEO 112
3 credits

GEO 353: Marine Ecology
A survey of biotic responses to ecological challenges in different marine realms. Controls of diversity and trophic structure in the marine ecosystem, historical aspects of marine realms, productivity in the oceans, plankton, soft-bottom communities, intertidal habitats, coral reefs, deep-sea environments, and effects of pollution in the ocean are discussed. This course is offered as both BIO 353 and GEO 353.
Prerequisite: BIO 201 or MAR 104
3 credits
GEO 403: Sedimentation and Stratigraphy
The history and practice of defining units of layered rocks and interpreting their spatial relationships. Topics include the basis for the geologic time scale, lithostratigraphic versus chronostratigraphic units, biostratigraphy, magnetostratigraphy, facies patterns and Walther’s Law, subsurface stratigraphy, and the application of stratigraphy to geological problems. Laboratory emphasizes practical techniques in stratigraphy.
Prerequisite: GEO 306
Corequisite: GEO 401
4 credits

GEO 405: Field Camp
A field course that may be taken at any one of several approved university field stations.
Prerequisites: Two upper-division GEO courses
1-6 credits

GEO 407: Igneous and Metamorphic Petrology
Topics focus on the processes that govern the formation and distribution of igneous and metamorphic rocks and their link to the Earth's mantle, crust, and tectonic regimes. Emphasis will be placed on integrating assessment of the chemical control on compositional diversity through phase diagrams with the study of natural rock suites through hand sample and thin section analysis. Three hours of lecture and one three-hour laboratory per week.
Prerequisite: GEO 306
4 credits

GEO 420: Environmental Analysis Using Remote Sensing and Geographic Information Systems
The use of aerial and satellite imagery in environmental analysis and the manipulation of geographic data sets of all types using Geographic Information Systems. Concentrating on Long Island, each student designs and completes a research project on a particular section of the area, focusing on the habitats of local wildlife, the locations of archaeological sites, coastal regimes, etc. Students should expect to spend approximately 10 hours per week beyond regularly scheduled classes in a University computer laboratory. This course is offered as both ANT 420 and GEO 420.
Prerequisite: Upper-division course in ANT or BIO or GEO or MAR
4 credits

GEO 440: Geological Applications of Remote Sensing
An introduction to the fundamental principles of remote sensing, with emphasis on geological and environmental applications. Discussion of the physical basis for remote sensing techniques. Survey of commonly used sensors and image analysis methods in earth sciences. Use of remotely sensed data in geographic information systems. Participants gain practical experience in geologic analysis using satellite imagery.
Prerequisite: GEO 102 or GEO 122
Advisory prerequisite: PHY 122 or PHY 132 or PHY 142 or PHY 126,127
3 credits

GEO 447: Senior Tutorial in Geology
Independent readings in advanced topics. May be repeated once.
Prerequisites: Permission of instructor and chairperson
1-3 credits

GEO 475: Undergraduate Teaching Practicum I
Work with a faculty member as an assistant in one of the faculty member's regularly scheduled classes. The student is required to attend all the classes, do all the regularly assigned work, and meet with the faculty member at regularly scheduled times to discuss the intellectual and pedagogical matters relating to the course.
Prerequisite: U4 standing; previous preparation in subject field; interview; permission of instructor
3 credits, S/U grading

GEO 476: Undergraduate Teaching Practicum II
Work with a faculty member as an assistant in one of the faculty member's regularly scheduled classes. Students assume greater responsibility in such areas as leading discussions and analyzing results of tests that have already been graded. Students may not serve as teaching assistants in the same course twice.
Prerequisite: GEO 475; previous preparation in subject field; interview; permission of instructor and department
3 credits, S/U grading

GEO 487: Senior Research in Geology
Under the supervision of a faculty member, a major in the department may conduct research for academic credit.
Prerequisites: Permission of instructor and chairperson
0-6 credits

GEO 488: Internship
Participation in local, state, or national private enterprises, public agencies, or nonprofit institutions. May be repeated to a limit of 6 credits.
Prerequisites: Permission of instructor and department
0-6 credits, S/U grading