EDP

Environmental Design, Policy, and Planning

EDP 301: The Built Environment I
The functional determinants of an urban region’s physical infrastructure, encompassing cities, suburbs, exurbs and satellite communities are presented. The course will cover metropolitan infrastructure components including systems of transportation, water supply, waste disposal and energy distribution and how they are shaped by the interaction of economics, politics and planning practice.
Prerequisite: SBC 200
3 credits

EDP 302: The Built Environment II
The functional dynamics underlying the development and planning for structures and facilities in urban regions are presented including their cities, suburbs, exurbs and recreational satellite communities. The course will cover the interaction of real estate economics, politics and good planning practices as they affect residential, commercial, educational, cultural and industrial sites.
Prerequisite: EDP 301
3 credits

EDP 303: Spatial Economics
Economic theories and empirical data that explain the distribution of man-made activities in geographic regions are presented. The course emphasizes spatial patterns among and within urban regions of the United States. Classes will cover the economic and demographic factors governing the distribution, within natural regional conurbations, of residences, industries and all other activities whose location is economically determined.
Prerequisite: SBC 206
3 credits

EDP 305: Risk Assessment and Sustainable Development
Course presents a comprehensive overview of risk analysis and its application to a broad range of human activities. The methodology of risk analysis enables those involved in environmental sustainability to evaluate the probability of an adverse effect of an agent, chemical, industrial process, or natural process.
Prerequisite: ENV 115
3 credits

EDP 307: Theories and Design of Urban Settlements
The course introduces students to the underlying economic, social and physical forces that shape the development of human settlements, with an emphasis on urban conurbations, and the typical United States metropolitan region.
Prerequisite: SBC 206 and SBC 111
3 credits

EDP 308: Regulative and Design for Sustainability
This study of regulatory design as it pertains to different scales of human settlement is integrated and applied to the functional design of urban spaces, with consideration of the sustainable critical factors in the natural environment.
Prerequisite: SBC 200
3 credits

EDP 309: Planning: Policies and Regulations
An introduction to the process of planning and development of regulations necessary for the implementation of planning objectives.
Prerequisite: SBC 200
3 credits

EDP 404: Environmental Design Project
The Environmental Design Project is the culmination of the EDP Major. Each student should produce an individual work, that is a thoughtful analysis of a real-world problem addressing one of four central themes of the major's core: 1) historic and theoretical perspectives; 2) the physical and built environment; 3) policy, politics and regulation; or 4) societal and cultural change. Allowing that there may be some overlap among these four themes, each project must focus on a specific place, process or object. Students are expected to produce a final project portfolio--which may include audio-visual materials, drawings, models, posters, artifacts, etc.-- and a written report. Each student is expected to make a presentation to faculty and students before the close of the semester.
Prerequisites: EDP 301, EDP 302, and CSK 102
3 credits

EDP 487: Research in Environmental Design, Policy, & Planning
Qualified advanced undergraduates may carry out individual research projects under the direct supervision of a faculty member. May be repeated.
Prerequisite: Permission of instructor
1-6 credits, S/U grading

SBC

Sustainability Block Curriculum

SBC 104 - B: Introduction to Moral Reasoning
An introductory inquiry into the formation and evaluation of moral judgments and reasoning.

SBC 111: Introduction to Sustainability Studies
Survey course introduces concept of sustainability. Sustainability is often defined as the ability to provide for the needs of the world's current population without damaging the ability of future generations to provide for themselves. This course reviews the needs of the current population and future generations, trends that affect our ability to provide those needs, and possible solutions that are environmentally, economically, and socially acceptable.
3 credits

SBC 113 - E: Physical Geography Lecture
This study of geosystems examines modern environmental problems through quantitative methods, analysis, and modeling grounded in basic and applied science and research. The goal of the course is to introduce students to the fundamental processes that dominate the atmosphere, hydrosphere, lithosphere, and biosphere, their characteristics and complex interactions, and their impact on human life and society.
3 credits

SBC 114: Physical Geography Lab
This laboratory course provides hands on experience in understanding the geosystems, including distribution and interrelationships of climate, vegetation, soils, and landforms.
Pre- or corequisite: SBC 113
1 credit

SBC 115: Introduction to Human Demography
An introductory course on the study of human population. Measurement issues and data in demographic analysis, as well as demographic perspectives on the basis of a review of major sources of information about population studies will be presented. Theories incorporating social, economic and political explanations for influences on human population growth will be considered. Population processes, with focus on fertility, mortality and migration, are reviewed. Population structure and characteristics, the interaction of the population processes

Stony Brook University: www.stonybrook.edu/ugbulletin
ENVIRONMENTAL DESIGN, POLICY, AND PLANNING (EDP) - COURSES

SBC 116: Introduction to Human Geography
Survey course introduces geography as a social science by emphasizing the relevance of geographic concepts to human problems. Course emphasizes globalization and cultural diversity.
3 credits

SBC 117 - D: Design Drawing
This introductory course exposes the student to the fundamental theories and practices employed in visually representing design concepts from observational through technical and speculative drawing. The course content introduces the student to contour drawing, rendering, orthographic projection, and pictorial drawing. Project work engages the student in the application of the above-mentioned drawing techniques and develops skills through the solution of student tailored problems.
3 credits

SBC 200 - F: Human Settlement: History and Future
The history of city growth over the millennia as affected by technological change is a basis for understanding the future of human settlement. More than half of the world's population currently lives in cities and urbanization continues on a global scale. The universality of urban development and resulting patterns will be presented as well as limits on growth of cities. Architectonic and socioeconomic planning theories and strategies for sustainable growth are presented. The development of Long Island, which is a microcosm of national and global patterns, will be discussed in detail.
3 credits

SBC 201: Systems and Models
Introduction to the dynamic modeling of complex systems. Students will learn to use simulation software that facilitates the visualization, formulation, and analysis of systems. Students will learn about systems with positive and negative feedbacks, the effects lags on system performance, and the difference between stocks and flows. Systems studied will include ecological models, economic models, chemical models, population models, epidemiological models, and models that include the interactions between population, economic development, and the environment.
Prerequisite: MAT 125, EHI, EDP, SUS, COS, or EHM major
1 credit

SBC 203 - G: Interpretation and Critical Analysis
An introduction to interdisciplinary inquiry and representation in arts, culture, and theory with emphasis on the roles of analysis, argument, and imagination in multiple media. Requires serious engagement with sophisticated texts.
Pre- or corequisite: WRT 102
3 credits

SBC 204 - E: Population Studies
The course will present basic mathematics of population growth and introduce various approaches for modeling populations, including population viability analysis (PVA). PVA, the quantitative assessment of the extinction risk of rare species or populations, takes biological information (habitat requirements, birth and death rates, population size) and makes predictions about future population sizes. Real examples will be discussed for a range of organisms, from bacteria to plants and mammals. This course will provide also the background for understanding human population growth. The impacts of human population growth in the developed and developing world on the ecology of other organisms, habitats and systems will also be discussed.
Prerequisite: MAT 125 and SBC 201
3 credits

SBC 205: Introduction to Geospatial Analysis (lab course)
Introduction to geographic information systems (GIS) and remote sensing techniques as applied to documenting, mapping, analyzing, interpreting, and managing natural and cultural resources. Overview of types of GIS data, computer hardware and software used for geospatial analysis, basic cartography, and global positioning system (GPS).
1 credit

SBC 206 - F: Economics and Sustainability
Introduction to the basic economic concepts used in sustainability analysis. Students will learn the basic concepts and how to apply them in various context. Topics include the analysis of situations in which the behavior of individuals indirectly affects the well-being of others, strategic behavior and the environment, and the use of market-oriented policies to help in the stewardship of the environment.
Prerequisite: ECO 108
3 credits

SBC 307 - K: American Environmental History
This course provides an overview of the history of how Americans have used, viewed and valued the natural environment. Beginning with the Indians and the early colonists (15th-16th centuries), the course will examine the cultural, social, economic, political, and technological currents that shaped North Americans' relationships with their environment in early and later industrial eras, after World War II, and finally, in the late 20th and early 21st centuries. Historical snapshots will center on people living in more natural places, such as farms and forests, as well as more built places, such as factories, cities, and suburbs. Events in the northeastern U.S. will provide a geographic focus, but the course will also look at related happenings elsewhere on the North American continent and beyond. Finally, it will examine at the growing array of movements that have identified themselves as 'environmental,' at the 'greenness' of modern culture, and at the environmental dimensions of a globalizing era.
Prerequisite: U3/U4 standing
3 credits

SBC 308 - K: American Environmental Politics
This course will survey the politics of environmental policy-making in the United States. It examines how contrasting political, economic and social interests and values have clashed and contended with one another, and the exerted power, in the environmental policy realm. The course will explore past precedents and roots, but with a view to explain the shape of this realm in the modern United States, including the many actors and institutions: local, regional and national governments, non-governmental organizations and interest groups, as well as the public. It will look at the main patterns by which these groups have defined environmental problems and formulated and implemented solutions. A chief goal is to illuminate how and why solutions of real-world environmental problems, if they are
to be effective, differ from those of scientific
or engineering puzzles.

Prerequisite: POL 102

3 credits

SBC 309: Global Environmental Politics

This course will explore the politics of
environmental policy-making within the
international realm. Focused especially on
environmental dilemmas that cross national
boundaries (i.e., pollution), or that are shared
by multiple nations (i.e., global warming)
it will look at the ways that such problems
have been defined and their solutions sought,
both with and without an over-arching state or
governance. It will survey the many groups,
interests and values that have clashed and
competed with one another to exert power
and influence international environmental
policies, as well as the variety of international
institutions and agreements that have sought
to formulate and implement solutions. One
goal is to illuminate how and why effective
solutions to global environmental problems
differ from those to scientific or engineering
puzzles. The course also aims to spur student
engagement with the sometimes overwhelming
nature of global environmental threats, the
tenuous and sometimes counterproductive
ways that knowledge and power can be linked,
and the ways individuals may act powerfully in
service of "sustainability."

Prerequisite: SBC 111, ENV 115, ENS 101,
GEO 101, or permission of instructor

3 credits

SBC 310: Migration, Development and
Population Redistribution

This course draws upon the contributions of
various social and natural sciences (including
population and urban geography, demography,
political science, sociology, history,
economics, public health and environmental
sciences) to explore the effects of migratory
and demographic shifts on the environment,
social welfare, public health, economic
development, ethnic diversity, urbanization,
public policy and planning. It will examine
the political, social, environmental, health and
economic effects on sustainability.

Prerequisite: SBC 115

3 credits

SBC 311 - H: Disasters and Society: A
Global Perspective

This class introduces students to the
sociological examination of natural,
technological, and industrial disasters.
Students will explore how and why disasters
are fundamentally social events: What do
disasters reveal about society? Why are the
human consequences of disasters unequally
distributed? What are the typical ways in
which states, organizations, and communities
respond to disasters? Focusing on case studies
from around the world, students will discuss:
What are the long-term/short-term causes of
particular disasters? What forms of suffering
the disasters under consideration generated?
What state/civil society actions did they
trigger? What advocacy networks were put in
place in their aftermath?

Prerequisite: SBC 111, or ENS 101, or GEO
101; POL 102 or SOC 105

3 credits

SBC 312 - F: Environment, Society, and
Health

This class examines the interactions between
environment, social structures, and institutions.
The first part of the class examines the ways
in which environmental issues are perceived
and constructed by various social actors (lay
public, state officials, scientists, activists,
media). The second part of the class will
examine the differential impact of class, race,
and gender on the distribution of hazards
and risks (what is commonly known as
'environmental inequality'). In the third part
of the class, students will be introduced to
different cases of 'contested environmental
illnesses' (cancer, lead-poisoning, asthma).

Prerequisite: SBC 111, or ENS 101, or GEO
101; POL 102 or SOC 105

3 credits

SBC 320 - J: Sub-Saharan Africa:
Geography, Cultures, and Societies

This course presents a broad perspective
on Sub-Saharan Africa, a region of sharp
geographic, cultural, and economic contrasts.
The legacy of the region's triple heritage
(indigenous, Islamic, and European) is
presented as a framework for understanding
the complexity and diversity of contemporary
Sub-Saharan Africa in terms of distribution
of languages, religions, ethnicity, family
relations, and governance systems. The
influence of globalization, migration, HIV/
AIDS, conflicts, population growth, and
socioeconomic development policies on
modern Sub-Saharan African are discussed.

Prerequisite: Junior or Senior Standing

3 credits

SBC 321 - G: Ecology and Evolution in
American Literature

This course is a review of 19th- and 20th-
century American writers who trace the
evolution of the US with respect to ecological
practices through various multicultural
perspectives. Literature covered will include
transcendentalist essays, utopian/dystopian
novels, ecofeminist fiction, and journalism.

Prerequisite: SBC 203 or EGL 204

3 credits

SBC 325: Environmental Writing and
the Media

An examination of multiple genres (including:
photo journalism, literary nonfiction, fine
art and advertising and documentary film)
in order to understand ways in which these
genres are utilized to inform and manipulate
public opinion regarding the environment.
The culmination of the course will be a final
project using multiple genres.

Prerequisite: WRT 102

Advisory Prerequisite: SBC 203

3 credits

SBC 330 - G: Extreme Events in
Literature

A course that examines the depiction of
extreme events (both natural and human-
related) in literature, journalism, art, and film,
with special emphasis paid to the extended
political and social issues that are raised by the
events in question.

Prerequisite: SBC 203 or EGL 204

3 credits

SBC 331 - G: City, Suburb, Sprawl

A course that traces the shift from city to
suburb to sprawl in texts that span the late-
nineteenth century through the early twenty-
first century, with special attention paid
to phenomena such as industrialization,
immigration, mass society, globalization, and
postmodern hyperspace. An interdisciplinary
set of texts will include works by novelists,
artists, architects, and literary theoreticians.

Prerequisite: SBC 203 or EGL 204

3 credits

SBC 354: Drawing for Design—CAD

Techniques and Theory of Drawing;
Architectural Drawing; Learning Computer
Assisted Design (CAD). This course will serve
as an introduction to CAD tools relevant to
design and architectural rendering.

Prerequisite: SBC 117

3 credits

SBC 401: Integrative, Collaborative
Systems Studies

Problem-based capstone course.

Prerequisite: U3/U4; CSK 102

3 credits
GSS 209: GIS and Cartography
Cartography is the knowledge associated with the art, science, and technology of maps. Digital computer cartography still follows the same fundamental principles and still requires a broad understanding of graphiacy as a language (as well as numeracy and literacy). This course will provide an introduction to cartographic principles, concepts, software and hardware necessary to produce good maps, especially in the context (and limitations) of geographic information systems (GIS).
Prerequisite: SBC 113
3 credits

GSS 313: GIS Design and Application I
This course provides the basic concepts underlying modern geographic information science and technology. Emphasis is placed on the principles of GIS for characterizing environmental systems and computer-based techniques for processing and analyzing spatial data. The course includes three hours of lecture and three hours of laboratory exercises each week.
Prerequisite: MAT 125 or MAT 131
4 credits

GSS 323: GIS Database and Design
Concepts of geodatabase design and management in geographic information systems (GIS), SQL statements, geographic data types and functions, data entry, techniques of geographic information structure applications. This is a Windows based computer class with the majority of students work involving GIS computer software.
Prerequisite: GSS 313
3 credits

GSS 325: GIS Design & Applications II
The course builds upon the topics covered in GIS Design and Application I. It emphasizes the applications of GIS in solving real-world problems. Students are expected to gain an understanding of GIS theory, methodology and most importantly application. Students are also expected to demonstrate abilities of spatial thinking, spatial analysis, and be able to solve practical spatial problems utilizing a GIS. Because GIS is both a tool for analysis and the visual communication of these data, students will be required to develop a GIS presentation, much as would be expected in a professional setting. This independent project will constitute a substantial portion of the final grade. This is a Windows based computer class with the majority of students work involving GIS computer software.
Prerequisite: GSS 313 or equivalent
3 credits

GSS 326: GIS Project Management
The course addresses issues unique to a GIS operation such as implementation issues, decision making procedures, strategies for success, legal issues, involvement of management, marking within an organization, strategic planning, and industry outlook.
Prerequisite: GSS 313
3 credits

GSS 487: Geospatial Science Research
Qualified advanced undergraduates may carry out individual research projects under the direct supervision of a faculty member. Repeatable to a maximum of 3 credits.
Prerequisite: Permission of instructor
0-3 credits, S/U grading

GSS 488: Geospatial Science Internship
The GSS Internship is designed to provide students experience in the real workplace. Interns are expected to function as a GIS/Remote Sensing professional and work within the existing host facility structure or on a free standing project. Interns will complete assigned tasks by hosting facility such as GIS data entry, data retrieval, remote sensing analysis, GPS field work, documentation, or general GIS facility duties. These activities will be monitored by both a representative of the host facility and the instructor. May be repeated to a limit of 12 credits.
Prerequisite: GSS 313 and GSS 325, or instructor consent
0-12 credits, S/U grading