CHE

Chemistry

CHE 115: Chemistry, Life, and Environment
This survey course introduces chemical principles by emphasizing the role chemistry plays in everyday life, the natural environment, the built environment, energy production, and in processes leading to environmental degradation. In addition, the role of chemistry in the development of alternative energy sources, remediation technologies, and eco-friendly products is discussed. This course for non-science majors introduces chemical principles using mostly qualitative approaches rather than quantitative approaches. Interactive tools and interactive visualization tools are extensively used to illustrate concepts, reactions, and processes. This course is offered as both CHE 115 and ENV 115.

DEC: E
SBC: SNW
3 credits

CHE 125: Learning Strategies Essential for Success in Chemistry
Focuses on developing techniques, strategies, and advanced learning skills that are essential for success in college-level chemistry. Real world contexts, issues, and problems are explored from a chemistry perspective. Provides a bridge from high school to college courses and from CHE 131 to CHE 132. A grade of C or higher in CHE 125 satisfies the prerequisite for entry into CHE 132, provided CHE 129 or CHE 131 have been completed with a passing grade (D or higher).

3 credits, ABC/U grading

CHE 129: General Chemistry IA
This is the initial course of the four-semester General-Chemistry/Organic-Chemistry sequence CHE 129/132/321/322. This sequence provides the necessary foundation for students who wish to pursue further coursework in chemistry. The General Chemistry Courses provide a broad introduction to the fundamental principles of chemistry, including substantial illustrative material drawn from the chemistry of inorganic, organic, and biochemical systems. The emphasis is on basic concepts, problem-solving, and factual material. Students will be placed into CHE 129 based on their performance in the Online Chemistry Placement and Preparation (OCPP) process. Specifically, CHE 129 is for students with chemistry knowledge above the required OCPP minimum but who do not meet the math corequisite of CHE 131. The level and content of CHE 129 match that of CHE 131, but since the corequisite differs, students must also attend a CHE 130 session each week. CHE 130 builds essential skills in information processing, critical and analytical thinking, quantitative reasoning, and problem solving. The CHE 129 four-semester sequence is inappropriate for students who satisfy the corequisites of CHE 131. It is also inappropriate for students who have completed an AP course in chemistry and received a score of 4 or 5; such students must enroll in CHE 152. Three lecture hours, one 80-minute workshop, and one CHE 130 session per week. CHE 129 may not be taken for credit in addition to CHE 131 or CHE 152. This course has been designated as a High Demand/Controlled Access (HD/CA) course. Students registering for HD/CA courses for the first time will have priority to do so. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Prerequisite: Online Chemistry Placement and Preparation (OCPP) Process. For information on the OCPP, copy and paste the following link into your browser. go.stonybrook.edu/ocpp
Corequisite: MAT 123 and CHE 130

DEC: E
SBC: SNW
4 credits

CHE 130: Problem Solving in General Chemistry
This course provides a structured environment for completing CHE 129 homework assignments and helping students develop the quantitative reasoning and problem solving skills needed in General Chemistry. Satisfactory/Unsatisfactory grading only. Grading is based on attendance and participation. Required for students taking CHE 129 along with MAT 123.

Mandatory corequisites: CHE 129 and MAT 123
1 credit, S/U grading

CHE 131: General Chemistry IB
This is the initial course in the four-semester General-Chemistry/Organic-Chemistry sequence CHE 131/132/321/322. This sequence provides the necessary foundation for students who wish to pursue further coursework in Chemistry. The General Chemistry Courses provide a broad introduction to the fundamental principles of chemistry, including substantial illustrative material drawn from the chemistry of inorganic, organic, and biochemical systems. The emphasis is on basic concepts, problem-solving, and factual material. The principal topics covered are stoichiometry, the states of matter, chemical equilibrium and introductory thermodynamics, electrochemistry, chemical kinetics, electron structure and chemical bonding, and chemical periodicity. Students will be placed into CHE 131 based on their performance in an Online Chemistry Placement and Preparation (OCPP) process. The four-semester sequence is inappropriate for students who have completed an AP course in chemistry and received a score of 4 or 5; these students are placed into CHE 152. Three lecture hours and one 80-minute workshop per week. May not be taken for credit in addition to CHE 129 or CHE 152. This course has been designated as a High Demand/Controlled Access (HD/CA) course. Students registering for HD/CA courses for the first time will have priority to do so.

Prerequisite: Online Chemistry Placement and Preparation (OCPP) Process. For information on the OCPP, copy and paste the following link into your browser. go.stonybrook.edu/ocpp
Corequisite: MAT 125 or higher

DEC: E
SBC: SNW
4 credits

CHE 132: General Chemistry II
A continuation of either CHE 129 or 131, introducing the fundamental principles of chemistry, including substantial illustrative material drawn from the chemistry of inorganic, organic, and biochemical systems. The principal topics covered are stoichiometry, the states of matter, chemical equilibrium and introductory thermodynamics, electrochemistry, chemical kinetics, electron structure and chemical bonding, and chemical periodicity. The sequence emphasizes basic concepts, problem solving, and factual material. It provides the necessary foundation for students who wish to pursue further coursework in chemistry. Three lecture hours and one 80-minute workshop per week. May not be taken for credit in addition to CHE 152. This course has been designated as a High Demand/Controlled Access (HD/CA) course. Students registering for HD/CA courses for the first time will have priority to do so. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Prerequisite: C or higher in CHE 129 or CHE 131; or C or higher in CHE 125 and D or higher in CHE 129 or CHE 131. Pre- or
CHE 133: General Chemistry Laboratory I

Designed to familiarize students with (1) some chemical and physical properties of substances, (2) techniques of quantitative chemistry, and (3) scientific methodology. Four hours of laboratory and discussion per week. CHE 133 may not be taken for credit in addition to CHE 143, and CHE 134 may not be taken for credit in addition to CHE 144. This course has been designated as a High Demand/Controlled Access (HD/CA) course. Students registering for HD/CA courses for the first time will have priority to do so. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Pre- or Corequisite: CHE 129 or 131
1 credit

CHE 134: General Chemistry Laboratory II

Designed to familiarize students with (1) some chemical and physical properties of substances, (2) techniques of quantitative chemistry, and (3) scientific methodology. Four hours of laboratory and discussion per week. CHE 133 may not be taken for credit in addition to CHE 143, and CHE 134 may not be taken for credit in addition to CHE 144. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Prerequisites: CHE 133
Pre- or Corequisite: CHE 132
1 credit

CHE 152: Molecular Science I

This is the initial course of the three-semester Molecular Science sequence CHE 152/331/332. The topics covered in CHE 152 include atomic and molecular structure, chemical bonding, thermodynamics, equilibrium and aqueous chemistry, electrochemistry, kinetics and basics of organic chemistry. Students will be placed into CHE 152 based on their performance in the Online Chemistry Placement and Preparation (OCPP) process or upon receipt of a score of 4 or 5 in AP chemistry. (Such students cannot enroll in any of the courses CHE 129/130, 131, or 132). May not be taken for credit in addition to CHE 129, 131, or 132. Three lecture hours and one 80-minute workshop per week.

Prerequisite: AP Chem score of 4-5 & satisfactory score on the Online Chemistry Placement & Prep Process (OCPP) or satisfactory score on the OCPP (http://go.stonybrook.edu/ocpp); co-registration in MAT 131 (preferred), MAT 125, AMS 151 or higher calculus
DEC: E
SBC: SNW
4 credits

CHE 154: Molecular Science Laboratory I

Designed to familiarize students with chemical and physical properties of substances, techniques of quantitative chemistry, and aspects of scientific methodology. Four hours of lab per week. CHE 154 may not be taken for credit in addition to CHE 134. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Corequisite: CHE 152
2 credits

CHE 150: Molecular Science Laboratory

Electrochemical and thermochemical measurements. Electronics in chemical instrumentation. Vacuum techniques. Electrical and magnetic properties of materials. Data-handling methods. Six hours of laboratory and discussion. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Prerequisite: CHE 134 or CHE 154
Corequisite: CHE 301
SBC: ESI, WRTD
2 credits

CHE 301: Physical Chemistry I

This course is the first half of a two-semester overview of modern physical chemistry, introducing students to the quantitative study of chemical systems. The fundamentals of thermodynamics from both macroscopic and microscopic standpoints are covered, with applications to chemical problems. May not be taken for credit by students who have completed CHE 312.

Prerequisite: CHE 132 or 151; MAT 132 or 142 or 127 or 171 or AMS 161
Pre- or Corequisite: PHY 121 or 125 or 131/133 or 141
SBC: STEM+
4 credits

CHE 302: Physical Chemistry II

Introduction to quantum theory and its application to the study of chemical bonding, molecular spectroscopy, statistical thermodynamics, chemical kinetics and molecular reaction dynamics.

Prerequisites: CHE 301; MAT 211 or 203 or 205 or AMS 261
Pre- or Corequisite: PHY 122 or 132/134 or 142 or PHY 126/127
4 credits

CHE 303: Solution Chemistry Laboratory

Quantitative techniques of solution chemistry. Measurement: accuracy and precision, analysis, computation, and reporting. Spectrophotometry. Solution equilibria and kinetics. Use of computers is introduced. Six hours of laboratory and discussion. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Prerequisite: CHE 132 or 151
Corequisite: CHE 301
SBC: ESI, WRTD
2 credits

CHE 304: Chemical Instrumentation Laboratory

Use of chemical principles in understanding processes that occur in the modern technological world and in the natural environment. Certain ecological problems of a chemical nature are analyzed. Methods of controlling these problems are discussed. Not for credit in addition to ENV 320.

Prerequisite: CHE 132 or CHE 152
DEC: H
SBC: STAS
3 credits

CHE 310: Chemistry in Technology and the Environment

A one-semester treatment of fundamental concepts of physical chemistry, intended primarily for students of the biological sciences desiring an introduction to physical chemistry. Topics include equations of state; classical thermodynamics and its application to chemical equilibrium in reaction systems, multiphase systems, and electrochemical cells; kinetic theory of gases; transport properties; chemical kinetics. May not be taken for credit by students who have completed CHE 301. Not for major credit.

Prerequisite: CHE 132 or 151
Corequisite: PHY 122 or 132/134 or 142 or PHY 126/127
SBC: TECH, WRTD
2 credits
SBC: STEM+
3 credits

CHE 321: Organic Chemistry I

An introduction to the structure, reactivity, and properties of organic compounds is presented using modern views of chemical bonding. These fundamental ideas are applied to topics ranging from synthetic chemistry to complex functional structures such as lipid bilayers. This course has been designated as a High Demand/Controlled Access (HD/CA) course. Students registering for HD/CA courses for the first time will have priority to do so.

Prerequisite: C or higher in CHE 132
SBC: STEM+
4 credits

CHE 322: Organic Chemistry IIA

Discussion of the structure, reactivity, and properties of organic compounds introduced in CHE 321 is continued. The chemistry of substances important in biology, medicine, and technology is emphasized. CHE 322 may not be taken for credit in addition to CHE 326. This course has been designated as a High Demand/Controlled Access (HD/CA) course. Students registering for HD/CA courses for the first time will have priority to do so.

Prerequisite: C or higher in CHE 321
SBC: STEM+
4 credits

CHE 326: Organic Chemistry IIB

Similar to CHE 322 but providing a more fundamental view of organic compounds, reaction mechanisms, and synthesis, based somewhat more explicitly on thermodynamics and kinetics. Especially for those who may major in chemistry, biochemistry, or another physical science. CHE 326 may not be taken for credit in addition to CHE 326. This course has been designated as a High Demand/Controlled Access (HD/CA) course. Students registering for HD/CA courses for the first time will have priority to do so.

Prerequisite: C or higher in CHE 321
4 credits

CHE 327: Organic Chemistry Laboratory

Techniques of isolating and handling organic substances, including biological materials. A one-semester course that provides a basic organic laboratory experience. It is recommended that students take CHE 327 at the same time as or immediately following CHE 322 or 323. Four laboratory hours and one lecture hour per week. Not for credit in addition to CHE 383. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.
Prerequisite: CHE 134 or CHE 154
Pre- or Corequisite: CHE 321 or CHE 331
2 credits

CHE 331: Molecular Science II

Topics include the structural, mechanistic and synthetic aspects of organic chemistry, transition metal chemistry, catalysis, supramolecular chemistry, and polymer chemistry. This is the second course in a three semester sequence. Students with a strong background prior to entering the University can take the 152-331-332 sequence, which covers the same material as 131-132-321-322. Three lecture hours and one 80-minute workshop per week. The laboratory component, CHE 383, must be taken the same semester as the CHE 331 lecture. May not be taken for credit in addition to CHE 321.
Prerequisite: C or higher in CHE 152
Corequisite: CHE 383
SBC: STEM+
4 credits

CHE 332: Molecular Science III

Topics include advanced structural, mechanistic and synthetic aspects of organic chemistry, the organic chemistry of biological pathways and biosynthesis. This is the final course in a three semester sequence. Students with a strong background prior to entering the University can take the 152-331-332 sequence, which covers the same material as 131-132-321-322. Three lecture hours and one 80-minute workshop per week. May not be taken for credit in addition to CHE 322.
Prerequisite: C or higher in CHE 331
4 credits

CHE 341: Organic Chemistry Honors Seminar I

Advanced topics in organic chemistry within the scope but beyond the reach of CHE 321 (Organic Chemistry I) will be discussed along with an introduction to contemporary research topics. Permission to enroll will be granted to students who have demonstrated excellence in their General Chemistry courses.
Prerequisites: CHE 132 or 142; permission of instructor
Corequisite: CHE 321
SBC: ESI, SPK
1 credit

CHE 342: Organic Chemistry Honors Seminar II

Advanced topics in organic chemistry within the scope but beyond the reach of CHE 322 and CHE 326 (Organic Chemistry II) will be discussed along with topics in contemporary research. Permission to enroll will be granted to students who have demonstrated excellence in CHE 321.
Prerequisites: CHE 321; permission of instructor
Corequisite: CHE 322 or 326
SBC: ESI, SPK
1 credit

CHE 345: Structure and Reactivity in Organic Chemistry

Electronic and stereochemical theories relating to organic structure and reactions. Topics such as bonding, strain, aromaticity, MO theory, molecular rearrangements, pericyclic reactions, and photochemistry are covered.
Prerequisite: CHE 322, CHE 326, or CHE 332
Pre- or Corequisite: CHE 301 or 312
3 credits

CHE 346: Biomolecular Structure and Reactivity

The reactivity and physiological function of biological macromolecules and their monomeric constituents are described at the chemical level. The course reflects the most recent advances at the interface of organic chemistry and biochemistry. Specific topics include catalysis, biomimicry, protein and DNA modification, binding and target recognition, and correlation between three-dimensional structure and reactivity.
Pre- or Corequisites: CHE 322, CHE 326, or CHE 332; CHE 301 or CHE 312
3 credits

CHE 348: Reaction Mechanisms in Organic Chemistry

Important classes of mechanisms of reactions useful in synthesis are explored. The kinetics and thermodynamics of these reactions are analyzed using modern structural theories. Examples of reaction types are substitutions, rearrangements, additions, eliminations, and selected organometallic reactions.
Prerequisite: CHE 322, CHE 326, or CHE 332
3 credits

CHE 351: Quantum Chemistry

Concepts of quantum theory, Schrodinger wave mechanics, and related mathematical techniques illustrated by application to systems of chemical bonding, spectroscopy, molecular structure, and molecular collision phenomena.
Prerequisites: CHE 302; MAT 203 or 205
3 credits

CHE 353: Chemical Thermodynamics
A rigorous development of thermodynamics and its application to systems of interest to chemists, including electrochemical cells, gases, polymers, and homogeneous and heterogeneous equilibrium. An introduction to statistical mechanics is included.
Prerequisites: CHE 302; CHE 321

3 credits

CHE 357: Molecular Structure and Spectroscopy Laboratory

Optical and magnetic resonance spectroscopy are used to investigate the structural, dynamic, and quantum mechanical properties of some basic chemical systems. Emphasis is on the quantitative measurement of molecular parameters and transformations. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.
Prerequisites: CHE 304 and 383

2 credits

CHE 358: Scientific Computing

The basic methods of numerical analysis and the design of computer programs that use them are discussed within the framework of solving a variety of exciting problems chosen from many areas of science. The presentation makes extensive use of powerful scientific computational environments, such as Mathematica, and Matlab, but guidance to other scientific high-level computer languages is also provided. No previous knowledge of scientific programming is assumed. Extensive use of personal or SINC-site computers outside the classroom is required
Prerequisite: MAT 127 or MAT 132 or MAT 142 or MAT 171 or AMS 161

2 credits

CHE 361: Nuclear Chemistry

Properties of radioactive substances and their use in the study of chemical problems, nuclear stability and structure, nuclear reactions, radioactive decay, interactions of radiation with matter, nuclear medicine, isotope applications, and environmental control. Offered in summer only.
Prerequisites: Four semesters of chemistry; PHY 126 and 127, or 132/134 or 142 or 171; AMS 161 or MAT 127 or 132 or 142; permission of department through application by January 30; permission of instructor
Corequisite: CHE 362

3 credits

CHE 362: Nuclear Chemistry Laboratory

Detection and measurement of radiation, electronic instrumentation, radiation safety, and application of radioactivity to chemical problems. Offered in summer only.
Corequisite: CHE 361

3 credits

CHE 375: Inorganic Chemistry I

A survey of inorganic chemistry covering various classes of inorganic compounds and reactions with emphasis on the structural aspects. Wherever possible, the subject is treated on the basis of modern concepts of chemical bonding. Thermodynamic and kinetic aspects of inorganic reactions are included.
Prerequisite: CHE 322, CHE 326, or CHE 332

3 credits

CHE 376: Inorganic Chemistry II

The chemistry of the elements with an emphasis on the transition metals. Reaction mechanisms, synthesis, and structure are covered. Specific areas of concern include coordination chemistry, organometallic chemistry, bioinorganic chemistry, and selected topics from solid-state and non-transition metal chemistry.
Prerequisite: CHE 375

3 credits

CHE 378: Materials Chemistry

Our high-technology world is driven forward by advances in materials world chemistry. This class will discuss some of the materials that underpin these technologies, as well as some of the novel classes of materials that are being developed for future applications. The course will cover the synthesis, structures, and properties of advanced materials, focusing on a range of topics with current societal importance (e.g. energy, computers, nanoscience, etc.). Specific topics may include batteries, fuel cells, catalysts, metals, semiconductors, superconductors, magnetism, and polymers.
Prerequisite: CHE 375 or ESG 332

3 credits

CHE 383: Introductory Synthetic and Spectroscopic Laboratory Techniques

Fundamental laboratory techniques including methods of separation, purification, synthesis, and analysis. Emphasis is on organic with an introduction to inorganic problems. For students who require substantial laboratory skills, such as those planning careers in research. Not for credit in addition to CHE 327. 131-132-321-322. Three lecture hours and one 80-minute workshop per week. The lecture component, CHE 331, must be taken the same semester as the CHE 383 laboratory. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.
Prerequisite: CHE 154
Corequisite: CHE 331

SBC: ESI

2 credits

CHE 384: Intermediate Synthetic and Spectroscopic Laboratory Techniques

Application of fundamental laboratory techniques to organic and inorganic problems including multistep syntheses and structural and mechanistic determinations. Lectures cover material pertaining to the experimental work, with an emphasis on spectroscopy. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.
Prerequisite: CHE 383 or CHE 327
Corequisites: CHE 322 or CHE 332

SBC: TECH, WRTD

3 credits

CHE 385: Tools of Chemistry

A seminar course covering topics common to all areas of chemistry: scientific ethics, chemical literature and information retrieval, scientific writing, and oral presentation. Should be taken concurrently with the student's second 300-level chemistry laboratory course. Satisfactory completion of the course fulfills the Chemistry department's upper division writing requirement. A through C/ Unsatisfactory grading only.
Pre- or corequisite: CHE 304 or CHE 384

SBC: CER, SPK

1 credit, ABC/U grading

CHE 386: Professional Skills

Development and refinement of the professional skills used by scientists. The exploration of more sophisticated presentation skills used in oral and poster presentations. The incorporation of collaborative problem solving that mimics real world situations, including simple proposal writing. An exposure to professional societies and meetings. An exploration of career options and employment resources. Tips for resume preparation, and interviews will be presented. Recommended for upper division undergraduates and Masters students.
Prerequisite: CHE 385 or permission of instructor

2 credits, S/U grading

CHE 444: Experiential Learning
This course is designed for students who engage in a substantial, structured experiential learning activity in conjunction with another class. Experiential learning occurs when knowledge acquired through formal learning and past experience are applied to a “real-world” setting or problem to create new knowledge through a process of reflection, critical analysis, feedback and synthesis. Beyond-the-classroom experiences that support experiential learning may include: service learning, mentored research, field work, or an internship.

Prerequisite: WRT 102 or equivalent; permission of the instructor and approval of the EXP+ contract (http://sb.cc.stonybrook.edu/bulletin/current/policiesandregulations/degree_requirements/EXPplus.php)

SBC: EXP+

0 credit, S/U grading

CHE 459: Write Effectively in Chemistry
A zero credit course that may be taken in conjunction with any 300- or 400-level CHE course, with permission of the instructor. The course provides opportunity to practice the skills and techniques of effective academic writing and satisfies the learning outcomes of the Stony Brook Curriculum's WRTD learning objective.

Prerequisite: WRT 102; permission of the instructor

SBC: WRTD

0 credit, S/U grading

CHE 461: Selected Topics in Chemistry
Semester supplements to this Bulletin contain specific description when course is offered. May be repeated as the topic changes.

Prerequisite: Varying with topic

1-3 credits

CHE 475: Undergraduate Teaching Practicum I
Work with a faculty member as an assistant in one of the faculty member's regularly scheduled classes. The student is required to attend all the classes, do all the regularly assigned work, and meet with the faculty member at regularly scheduled times to discuss the intellectual and pedagogical matters relating to the course. Students may participate only in courses in which they have excelled.

Prerequisite: Permission of department

SBC: EXP+

3 credits, S/U grading

CHE 476: Undergraduate Teaching Practicum II
Work with a faculty member as an assistant in one of the faculty member's regularly scheduled classes. Students assume greater responsibility in such areas as leading discussions and analyzing results of tests that have already been graded. Students may participate only in courses in which they have excelled. The course in which the student is permitted to work as a teaching assistant must be different from the course in which he or she previously served.

Prerequisite: Permission of department

SBC: EXP+

3 credits, S/U grading

CHE 477: Undergraduate Teaching Practicum III
Work with a faculty member as an assistant in one of the faculty member's regularly scheduled classes. Students may participate only in courses in which they have excelled. May be repeated.

Prerequisites: CHE 476; permission of instructor and department

SBC: EXP+

0 credit, S/U grading

CHE 478: Research in Chemistry
Students pursue research or tutorial study in specialized areas of chemistry. May be repeated.

Prerequisites: Permission of instructor and department

SBC: EXP+

0-6 credits

CHE 487: Research in Chemistry
Students pursue research or tutorial study in specialized areas of chemistry. May be repeated.

Prerequisites: Permission of instructor and department

SBC: EXP+

0-6 credits

CHE 495: Senior Research
First course of a two-semester research program to be carried out under the supervision of a staff member. The results of this work are to be submitted to the department in the form of a senior research report. The student is given an oral examination in May by a faculty committee consisting of the student's supervisor and three other faculty members. Students receive only one grade upon completion of the sequence CHE 495-496.

Prerequisite: U4 standing; permission of instructor and department

SBC: EXP+

3 credits

CHE 496: Senior Research
Second course of a two-semester research program to be carried out under the supervision of a staff member. The results of this work are to be submitted to the department in the form of a senior research report. The student is given an oral examination in May by a faculty committee consisting of the student's supervisor and three other faculty members. Students receive only one grade upon completion of the sequence CHE 495-496.

Prerequisite: U4 standing; permission of instructor and department

SBC: ESI, EXP+, SPK

3 credits
A discussion of relativity followed by review

3 credits

SBC: DEC:

severity of failure.

to create designs that decrease the chance and
engineers learn from their mistakes in order
meltdowns to lost spacecraft to stock market
results. Through discussion and analysis
and, in some cases, fails with catastrophic
Everything, however, does eventually fail
should perform its function without fail.
importantly, that device, plan or creation

ESG 198: Fundamentals of Engineering

Chemistry

A quantitative introduction to chemistry
(stoichiometry, bonding, states of matter;
equilibrium) with emphasis on topics of
interest to students in engineering (metals
and semiconductors; thermochemistry;
electrochemistry and corrosion; polymers).
Labs include an introduction to analytical
techniques, electrochemistry and chemical
synthesis. Both quantitative and qualitative
methods are emphasized. May not be taken for
credit in addition to CHE 131/133, 141/143 or
198/199.

Pre- or Corequisites: PHY 132 or PHY 142 or
PHY 126 and PHY 127; MAT 127 or MAT 132
or MAT 142 or AMS 161

4 credits

ESG 199: Introduction to

Undergraduate Research

An introduction to independent research and
basic research skills. Students perform an
independent research project in engineering
science under the supervision of a faculty
member. May be repeated.

Prerequisite: Permission of instructor

0-3 credits

ESG 201: Learning from Engineering

Disaster

The role of the engineer is to respond to a
need by building or creating something along
a certain set of guidelines (or specifications)
which performs a given function. Just as
importantly, that device, plan or creation
should perform its function without fail.
Everything, however, does eventually fail
and, in some cases, fails with catastrophic
results. Through discussion and analysis
of engineering disasters from from nuclear
meltdowns to lost spacecraft to stock market
crashes, this course will focus on how modern
engineers learn from their mistakes in order
to create designs that decrease the chance and
severity of failure.

Prerequisite: one D.E.C. E or SNW course

DEC: H
SBC: STAS

3 credits

ESG 281: Engineering Introduction to

the Solid State

A discussion of relativity followed by review
of the atom and its constituents. Lectures
treat the quantization of light and of atomic
energy levels, matter waves, and introduce the
Schrödinger equation, first in one dimension,
then in three dimensions. Electron spin and
magnetic effects are discussed, followed by
multielectron atoms and the periodic table.
Radiation and lasers, molecules and solids,
including conductors, semiconductors, and
insulators.

Prerequisite: PHY 132/134 or 126/127/134

3 credits

ESG 300: Writing in Engineering

Science

See Requirements for the Major in
Engineering Science, Upper-Division Writing
Requirement.

Prerequisites: WRT 102; ESG major; U2
standing
Corequisite: ESG 312

0 credit, S/U grading

ESG 302: Thermodynamics of Materials

The basic laws and concepts of
thermodynamics are elucidated, and the
important thermodynamic relationships are
systematically developed with reference to the
behavior of materials. The thermodynamics
of solids is discussed, including the
thermodynamics of solutions and the
calculation of reaction-free energies and
equilibria in condensed phase reactions such as
phase transformations, oxidation, and
diffusion.

Prerequisite: ESG 198 or CHE 131/133 or
CHE 152 and AMS 261
Advisory Corequisite: AMS 361 and CHE
132/134 or CHE 154

3 credits

ESG 312: Engineering Laboratory

Laboratory exercises and lectures covering
the theory, practice, and design of engineering
experimentation. The course has three
components: error analysis and data message;
electrical circuits and experiment control;
and mechanical and optical measurement.
Laboratory fee required.

Prerequisites: PHY 126 and 127 or PHY
132/134; U2 standing
Corequisite: ESG 300

4 credits

ESG 316: Engineering Science Design

Methods

Design and design-planning methods are
developed from the conceptual stages through
the application stages using lecture and
laboratory. Includes synthesis, optimization,
modeling, and simulation and systems
engineering. Case studies illustrate the design
process. Students undertake a number of
laboratory projects employing various design
tools. Laboratory fee required.

Prerequisites: ESG major; U2 standing or
higher; ESG 100; AMS 161 or MAT 127 or
MAT 132 or MAT 142 or MAT 171

4 credits

ESG 332: Materials Science I: Structure

and Properties of Materials

A study of the relationship between the
structure and properties of engineering
materials and the principles by which
materials' properties are controlled. The
structure and structural imperfections in simple
crystalline materials and the role that these
factors play in defining electrical conductivity,
chemical reactivity, strength, and ductility
are considered. The molecular structure of
polymers is discussed and related to the
behavior of plastics, rubbers, and synthetic
fibers. The principles of phase equilibria and
phase transformation in multicomponent
systems are developed. These principles
are applied to the control of the properties
of semiconductors, commercial plastics,
and engineering alloys by thermochemical
treatment. Corrosion, oxidation, and other
deterioration processes are interpreted
through the interaction of materials with their
environment.

Prerequisites: CHE 131 and CHE 133 (or
Mechanical Engineering majors may use MEC
301 as a corequisite)

3 credits

ESG 333: Materials Science II:

Electronic Properties

After a review of quantum mechanics and
atomic physics, the binding energy and
electronic energy levels in molecules and
solids are discussed. The free-electron
theory of metals is introduced and applied
to the quantitative treatment of a number of
electron emission effects. The band theory
of solids is developed quantitatively via the
Kronig-Penney model, and the transport
properties of metals and semiconductors
are discussed in detail. The physical principle
of pn junctions, transistors, tunnel diodes, etc. is
explained. Fundamentals and applications
of photoconductors, lasers, magnetic materials,
and superconductors are also discussed. (ESG
332 is not a prerequisite.)

Prerequisites: ESG 281 or PHY 251/252; ESG
302 or CME 304

3 credits

ESG 339: Thin Film Processing of

Advanced Materials
Fundamental aspects of thin film materials design, fabrication, and characterization. Overviews of semiconductor fabrication, surface analysis, and vacuum system design. This course includes a design content of one credit, achieved through a design exercise related to thin film fabrication.

Prerequisite: ESG 332, or ESE 231 for ESE majors

4 credits

ESG 375: Fundamentals of Professional Engineering

The course provides an overview of professional licensure and focuses on the general fundamentals of the engineering exam. Students take a practice exam for both the general exam and in-depth general exam option and review the results.

Prerequisite: Junior or Senior Standing

1 credit

ESG 420: Fluid Flow, Heat & Mass Transport

This course introduces the description of phenomena associated with fluid statics and fluid flow and the unifying principles and analytical description of phenomena of momentum transport (viscous flow), energy transport (heat conduction and convection) and mass transport (diffusion) in continuous media; similarities and differences in these phenomena. Not for credit in addition to MEC 364.

Prerequisites: PHY 127/134 or PHY 132/134 or PHY 142; AMS 361 or MAT 303 or MAT 305

3 credits

ESG 440: Capstone Engineering Design I

Lectures by faculty members and visitors on typical design problems encountered in engineering practice. During this semester each student chooses a senior design project. A preliminary design report is required. Not counted as a technical elective. Laboratory fee required.

Prerequisites: ESG 312; ESG 316; ESG 332; ESG major; U4 standing; permission of the department

3 credits

ESG 441: Capstone Engineering Design II

Student groups carry out the detailed design of the senior projects chosen during the first semester. A final and detailed design report is prepared. Not counted as a technical elective. Laboratory fee required.

Prerequisite: ESG 440

3 credits

ESG 487: Cooperative Research in Technological Solutions

An independent research course in which students apply principles of engineering design, technological problem solving, mathematical analysis, computer-assisted engineering, and effective teamwork and communication to develop solutions for a need in a governmental, educational, non-profit, or community organization in a multidisciplinary setting.

Prerequisites: U3 or U4 standing; an abstract of the project; permission of instructor

0-3 credits