Ecosystems and Human Impact (EHI)

Major and Minor in Ecosystems and Human Impact

Director: Dr. Sharon Pochron
Email: Sharon.pochron@stonybrook.edu
Program Office: W0511 Melville Library
Phone: 631.632.9404
Website: http://www.stonybrook.edu/commcms/sustainability/majors/Ecosystemsmajorpage.pcf.html

Ecosystems and Human Impact (EHI)
The Ecosystems and Human Impact major, leading to a Bachelor of Art degree, provides the skills, knowledge, and preparation for students to assess and address the complex interaction of humans and natural environments. The curriculum integrates principles and methodologies from ecology, biology, genetics, anthropology, human ecology, and geography, combined with an understanding of economics, ethics, and policy within a greater global perspective.

The major prepares students for entry-level employment in the public, private, or non-profit sectors concerned with a wide range of issues, such as: conservation of ecosystems, ecosystem restoration, loss of biodiversity, and development of sustainable bioresources. The major prepares students for graduate study in anthropology, geography, environmental science, sociology, natural resource management, and biology among other fields.

The major builds on the interdisciplinary sustainability core curriculum. Students will enroll in major-specific courses in their junior and senior year. In their junior or senior year students will have the opportunity to enroll in the study abroad program at Ranomafana, Madagascar, which provides training in field biology, ecology, primatology, and anthropology. Students enrolled in this program will take courses and conduct independent research that contributes to a better understanding of Ranomafana National Park and the link between the park and the people of the region. Local internships, research courses, and field courses are also available to students to build up real-world experience.

The Ecosystems and Human Impact minor is intended for students who seek to complement their chosen major with a coherent set of courses emphasizing the interaction between humans and ecosystems from an interdisciplinary perspective.

Requirements for the Major and Minor in Ecosystems and Human Impact (EHI)

Requirements for the Major

A. Required Foundation Courses for Major (32-33 credits)

- MAT 125 or MAT 131 Calculus or AMS 151. If students do not place into MAT 125 or 131 or AMS 151 on the basis of the math placement examination, MAT 123 is a required course for the major.
- ECO 108 Introduction to Economics
- GSS 313 GIS Design and Application I and GSS 314 GIS Laboratory
- SBC 111 Introduction to Sustainability
- SBC 113 Physical Geography
- CHE/ENV 115 Chemistry, Life, and Environment (Note: CHE 129, 131, 141, or 152 may be substituted for CHE/ENV 115)
- SBC 201 Systems and Models
- ANP 120 Introduction to Physical Anthropology
- SBC 204 Population Studies
- BIO 201 and BIO 204 Fundamentals of Biology: Organisms to Ecosystems and lab

B. Career and Leadership Skills (6 credits)

- CSK 302 Technical Writing and Communication
- CSK 305 Collective Action and Advocacy

C. Core Courses (12 credits)

- ENV 304 Global Environmental Change
- BIO 351 Ecology
- EHI 326 Conservation Genetics
- EHI 322 Human Ecology

In addition to the 4 core courses (12 credits) above, students are required to select four courses from group I (12-14 credits) and one course (3 credits) from group II. (Note ANP 307, 326, 391, and 350 are offered in Madagascar)

Group I:

- ANP 307 Comparing Ecosystems in Madagascar
• ANP 326 Lemurs of Madagascar
• ANP 350 Field Methods in Primatology and Field Biology
• ANP 391 Ecosystem Diversity and Evolution
• BIO 319 Landscape Ecology Laboratory
• BIO 352 Ecology Laboratory
• BIO 353 Marine Ecology
• GEO 313 Understanding Water Resources for the 21st Century
• GSS 313/GSS 314 Design and Application I with GIS Lab
• MAR 315 Conservation Biology and Marine Biodiversity
• MAR 388 Tropical Marine Ecology
• EHI 310 Preservation and Restoration of Ecosystems
• EHI 311 Ecosystem Based Management
• EHI 321 Human Reproductive Ecology
• EHI 340 Ecological and Social Dimensions of Disease
• EHI 342 Materials in Human and Natural World
• EHI 343 Sustainable Natural Resources
• EHI 350 Design and Implement a Research Project in Ecotoxicology
• EHI 351 Conduct and Communicate a Research Project in Ecotoxicology
• ENV 310 Sustainability and Renewable Energy - Costa Rica
• ENV 340 Contemporary Topics in Environmental Science

Group II:
• AFS 374/SBC 374 Environment and Development in African History
• EHM 314 Civilizations and Collapse
• EHM 316 Cuba and Sustainability
• ENS 311 Ecosystem Ecology and Global Environment
• SBC 203 Interpretation & Critical Analysis
• SBC 206 Economics and Sustainability
• SBC 309 Global Environmental Politics
• SUS 341 Environmental Treatises and Protocols
• SBC 307 Environmental History of North America
• SBC 321 Ecology and Evolution in American Literature
• SBC 325 Environmental Writing and the Media
• SUS 350 Contemporary Topics in Sustainability

One of the following courses may be substituted for any of the courses in Group II, but each of these courses below has a prerequisite outside the major.

• SBC 310 Migration, Development and Population Redistribution
• SUS 303 Demographic Change and Sustainability
• EDP 309 Planning: Policies and Regulations
• SUS 366 Philosophy of the Environment
• SBC 311 Disasters and Society: A Global Perspective
• SBC 312 Environment, Society, and Health
• SUS 306 Business and Sustainability
• SUS 307 Environmental Economics and Sustainability

D. Systems Course (3 credits)
Choose one of the following:

• ENV 301 Sustainability of the Long Island Pine Barrens
• SBC 401 Integrative, Collaborative Systems Project
• ANP 487 Independent Research in Biological Anthropology
• ANT 487 Independent Study Anthropology (both Cultural and Physical) as part of study abroad in Madagascar

E. Communications and Writing requirement
Proficiency in writing, oral communication, and computer literacy will be encouraged in all students. In addition to CSK 302, these skills will be developed within the context of other formal coursework and no additional credits are required. To meet the upper-division writing requirement, students must submit two papers with letter grades of no lower than a B from any 300-level or 400-level course in the major to the director of the EHI Undergraduate Program.

Students should consult with the department advisor to ensure that their plan for completing the Upper Division Writing Requirement is consistent with university graduation requirements for General Education. Students completing the Stony Brook Curriculum (SBC) must complete a course that satisfies the "Write Effectively within One's Discipline" (WRTD) learning objective to graduate. The Upper Division Writing Requirement is consistent in most cases with the SBC learning outcomes for WRTD.

Note:

Stony Brook University: www.stonybrook.edu/ugbulletin
All courses offered for the major must be passed with a letter grade of C or higher. Course taken with the Pass/NC option may not be applied to the major.

Study Abroad

Stony Brook University offers study abroad experiences that are focused on issues of sustainability in Costa Rica, Madagascar, and the Turkana Basin (Kenya). While issues of climate change, water and energy security, sustainable agriculture, environmental justice, sustainable economic development, conservation of unique and threatened ecosystems, population growth, and human health are important everywhere, viewing these issues through the lens of a different place and a different culture provides a valuable perspective. Students are encouraged to participate in study abroad experiences and to talk with their major director to determine how study abroad coursework can be used to fulfill some requirements for their major.

Minor

The Ecosystems and Human Impact minor is intended for students who seek to complement their chosen major with a coherent set of courses emphasizing the interaction between humans and ecosystems from an interdisciplinary perspective.

At least 12 credits applied to the minor may not be applied to any major or other minor within the Sustainability Studies Program.

Requirements for the Minor

- No more than one three-credit course in the minor may be taken under the Pass/No Credit option.
- All upper-division courses offered for the minor must be passed with a letter grade of C or higher.
- Completion of the minor requires 19 to 20 credits. Students electing this minor should arrange a meeting with the EHI director to develop a course plan and complete the necessary forms.

1. **Required introductory courses:**
 - SBC 111 Introduction to Sustainability
 - BIO 201 Fundamentals of Biology: Organisms to Ecosystems
 - SBC 201 Systems and Models

 One of the following two courses:
 - ANP 120 Introduction to Physical Anthropology
 - ENV 115 Chemistry, Life, and Environment

2. **Required minimum of three advanced courses chosen from the following:**
 - ANP 307 Comparing Ecosystems in Madagascar*
 - ANP 326 Lemurs of Madagascar*
 - ANP 350 Methods in Studying Primates*
 - ANP 391 Ecosystem Diversity and Evolution*
 - BIO 319 Landscape Ecology Laboratory
 - BIO 336 Conservation Biology
 - BIO 351 Ecology
 - BIO 352 Ecology Laboratory
 - BIO 353 Marine Ecology
 - EHI 310 Restoration Ecology
 - EHI 311 Ecosystem-Based Management
 - EHI 322 Human Ecology
 - EHI 326 Conservation Genetics
 - EHI 342 Materials in Human and Natural World
 - EHI 343 Sustainable Natural Resources
 - EHI 350 Design and Implement a Research Project in Ecotoxicology
 - EHI 351 Conduct and Communicate a Research Project in Ecotoxicology
 - ENV 301 Sustainability of the Long Island Pine Barrens
 - ENV 304 Global Environmental Change
 - ENV 310 Sustainability and Renewable Energy - Costa Rica
 - ENV 340 Contemporary Topics in Environmental Science
 - GEO 313 Understanding Water Resources for the 21st Century
 - MAR 315 Conservation Biology and Marine Biodiversity
 - SBC 309 Global Environmental Politics

* These courses are offered as part of the Madagascar Study Abroad Program.

Declaration of the Minor
Students should declare the Ecosystems and Human Impact minor no later than the middle of their sophomore year, at which time they should consult with the minor coordinator or undergraduate director and plan their course of study for fulfillment of the requirements.

Sample Course Sequence for the Major in Ecosystems and Human Impact
A course planning guide for this major may be found here. The major course planning guides are not part of the official Undergraduate Bulletin, and are only updated periodically for use as an advising tool. The Undergraduate Bulletin supersedes any errors or omissions in the major course planning guides.

<table>
<thead>
<tr>
<th>FRESHMAN</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td></td>
</tr>
<tr>
<td>First Year Seminar 101</td>
<td>1</td>
</tr>
<tr>
<td>WRT 101</td>
<td>3</td>
</tr>
<tr>
<td>SBC 111</td>
<td>3</td>
</tr>
<tr>
<td>MAT 125 or MAT 131</td>
<td>3-4</td>
</tr>
<tr>
<td>SBC 113</td>
<td>3</td>
</tr>
<tr>
<td>CSK 102</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14-15</td>
</tr>
<tr>
<td>SPRING</td>
<td></td>
</tr>
<tr>
<td>First Year Seminar 102</td>
<td>1</td>
</tr>
<tr>
<td>WRT 102</td>
<td>3</td>
</tr>
<tr>
<td>CSK 104</td>
<td>1</td>
</tr>
<tr>
<td>ENV 115</td>
<td>3</td>
</tr>
<tr>
<td>SBC 205</td>
<td>1</td>
</tr>
<tr>
<td>SBC 116</td>
<td>3</td>
</tr>
<tr>
<td>POL 102</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td></td>
</tr>
<tr>
<td>SBC 201</td>
<td>1</td>
</tr>
<tr>
<td>ANP 120</td>
<td>4</td>
</tr>
<tr>
<td>BIO 201/BIO 204</td>
<td>5</td>
</tr>
<tr>
<td>CSK Elective</td>
<td>1</td>
</tr>
<tr>
<td>SBC</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td>SPRING</td>
<td></td>
</tr>
<tr>
<td>ENV 304</td>
<td>3</td>
</tr>
<tr>
<td>Foreign Language or elective</td>
<td>3-4</td>
</tr>
<tr>
<td>ECO 108</td>
<td>4</td>
</tr>
<tr>
<td>SBC 204</td>
<td>3</td>
</tr>
<tr>
<td>SBC 203</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16-17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td></td>
</tr>
<tr>
<td>Stony Brook University: www.stonybrook.edu/ugbulletin</td>
<td>4</td>
</tr>
</tbody>
</table>

4
EHI 326	3
Group II #1 SBC 309	3
CSK 302	3
EHM 201	3
SBC	3
Total	**15**

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 351</td>
<td>3</td>
</tr>
<tr>
<td>Group I #1 ENV 340</td>
<td>3</td>
</tr>
<tr>
<td>Group I #2 300-level elective</td>
<td>3</td>
</tr>
<tr>
<td>EHI 322</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I #3 EHI 310</td>
<td>3</td>
</tr>
<tr>
<td>Group I #4 EHI 311</td>
<td>3</td>
</tr>
<tr>
<td>SBC 401</td>
<td>3</td>
</tr>
<tr>
<td>Internship/Research</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSS 313/GSS 314</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>EHI 487</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>
Human ecology investigates how humans and human societies interact with nature and with their environment. Course first introduces the concepts and methods of human ecology. Following this foundation, the course will give special emphasis to empirical examples, case studies and lessons from history. The course will focus on individuals, communities and traditional societies. Human Ecology compliments Human Geography, which studies patterning at the larger scale.

Prerequisite: BIO 201

SBC: STEM+

3 credits

EHI 326: Conservation Genetics

This course is an introduction to genetics taught in the context of conservation. The course will cover a basic introduction to Mendelian, molecular, population, evolutionary and meta-population genetics, and then examine specific applications of these concepts to topics in conservation biology.

Prerequisite: BIO 201

DEC: E

SBC: STEM+

3 credits

EHI 343: Sustainable Natural Resources

This course explores in depth the economic viability, social acceptance, and potential of sustainable natural resources to replace non-renewable resources. Examples are drawn from water resource management, agriculture, forestry, fisheries, and renewable energy resources (wind, solar, biofuel, etc.). There is particular emphasis on examples of integrated, participatory and sustainable natural resources management project in less developed countries.

Prerequisite: SBC 111 or ENS 101; ENV 115 or CHE 131; BIO 201

DEC: H

SBC: STAS

3 credits

EHI 340: Ecological and Social Dimensions of Disease

The ecology and evolutionary biology of disease will be examined to provide a more general context for human diseases. Pathogens may have large effects on many different types of organisms, from bacteria to plants to humans. We will build on this biological background to examine the social dimensions of disease in human populations and societies, including historical, political and economic aspects to issues of money, power, sexuality, international development and globalization. Specific case studies (the chestnut blight in North America, AIDS in Africa, etc.) will be used to examine concepts and principles in detail in a real-world context. This course will investigate basic fundamentals and recent research on these issues in a unified framework.

Prerequisite: BIO 201

DEC: H

SBC: STAS

3 credits

EHI 324: Materials in the Natural and Human World

Course explores in depth the origin, composition, use, bioavailability, mobility, persistence, and fate of selected materials and chemical compounds. Compounds or materials, such as DDT, aldicarb, freon, plastics, organotin, nuclear fuel, antibiotics, and carbon nanotubes, are used to illustrate how man-made substances once released into the environment can lead to environmental degradation, ecological degradation, and/or public health issues.

Prerequisite: ENV 115 or CHE 131; BIO 201

DEC: H

SBC: STAS

3 credits

EHI 321: Human Reproductive Ecology

Course builds on behavioral ecology to focus on why humans make the reproductive choices they do and examines cross cultural and individual differences in fertility, mortality and population growth. Course is organized around current debates in physiological, behavioral, and social aspects of human reproduction. A background in reproductive ecology allows students to think empirically about the demographic component of human/environment interactions, and to better model sustainable futures.

Prerequisite: BIO 201; SBC 115 or SBC 204

SBC: STAS

3 credits

EHI 322: Human Ecology

Ecosystem-Based Management (EBM) is an emerging management paradigm for balancing ecosystem health and human activities. EBM stresses that management must 1) integrate ecological, social, economic, and institutional views, 2) produce sustainable results, 3) consider uncertainty and risks in making management decisions, and 4) utilize adaptive management practices. This course will examine these principles and identify ways they may be put into practice.

Prerequisite: SBC 111 or ENS 101; BIO 351

SBC: STEM+

3 credits

EHI 310: Restoration Ecology

A study of the rationale, principles, practices, and legal, social, economic, and ethical issues associated with restoring the structure and function of degraded ecological systems. Restoration ecology draws heavily from ecological theory, and the process of restoring a site can in fact provide unique experimental opportunities to test how well ecological theories predict the responses of natural systems. Important ecological concepts applied in restoration include disturbances, succession, fragmentation, system function, as well as, emerging areas such as assembly theory and alternative stable states.

Prerequisite: BIO 201

SBC: STEM+

3 credits

EHI 311: Ecosystem Based Management

Ecosystem-Based Management (EBM) is an emerging management paradigm for balancing ecosystem health and human activities. EBM stresses that management must 1) integrate ecological, social, economic, and institutional views, 2) produce sustainable results, 3) consider uncertainty and risks in making management decisions, and 4) utilize adaptive management practices. This course will examine these principles and identify ways they may be put into practice.

Prerequisite: SBC 111 or ENS 101; BIO 351

SBC: STEM+

3 credits

EHI 326: Conservation Genetics

This course is an introduction to genetics taught in the context of conservation. The course will cover a basic introduction to Mendelian, molecular, population, evolutionary and meta-population genetics, and then examine specific applications of these concepts to topics in conservation biology.

Prerequisite: BIO 201

DEC: E

SBC: STEM+

3 credits

EHI 340: Ecological and Social Dimensions of Disease

The ecology and evolutionary biology of disease will be examined to provide a more general context for human diseases. Pathogens may have large effects on many different types of organisms, from bacteria to plants to humans. We will build on this biological background to examine the social dimensions of disease in human populations and societies, including historical, political and economic aspects to issues of money, power, sexuality, international development and globalization. Specific case studies (the chestnut blight in North America, AIDS in Africa, etc.) will be used to examine concepts and principles in detail in a real-world context. This course will investigate basic fundamentals and recent research on these issues in a unified framework.

Prerequisite: BIO 201

DEC: H

SBC: STAS

3 credits

EHI 350: Design and Implement a Research Project in Ecotoxicology

Research, design and implement a unique project in ecotoxicology. Course covers literature reviews, hypothesis formation, initial implementation of a research project, and some write-up. Projects vary by year but may involve ecotoxins such as acid rain, heavy metals, pesticides, plastics or herbicides and organisms such as soil microbes and/or earthworms. Students are encouraged but not required to enroll in EHI 351, offered in the spring, to complete and communicate their project. Course may be repeated once with director's approval.

Prerequisite: C or better in one of the following: BIO 201, BIO 202, BIO 203, CHE 115, CHE 123, CHE 129, CHE 131, CHE 141, CHE 152, PHY 121, PHY 125, ENV 115

SBC: EXP+, STEM+

3 credits

EHI 351: Conduct and Communicate a Research Project in Ecotoxicology

Conduct and communicate a student-designed project in ecotoxicology. Course covers data collection, data analysis and write up. Students will communicate their research at an appropriate venue such as URECA. Projects vary by year and will involve ecotoxins such as acid rain, heavy metals, pesticides, plastics...
or herbicides and organisms such as soil microbes or earthworms. Course builds on a project initiated in EHI 350, but EHI 350 is not a prerequisite. Course may be repeated once with the director's approval.

Prerequisite: C or better in one of the following: BIO 204, 205, 207, CHE 133, 134, 154, PHY 123, 124, 133, 134, 191, 192, EHI 350

SBC 111: Introduction to Sustainability Studies
Survey course introduces concept of sustainability. Sustainability is often defined as the ability to provide for the needs of the world's current population without damaging the ability of future generations to provide for themselves. This course reviews the needs of the current population and future generations, trends that affect our ability to provide those needs, and possible solutions that are environmentally, economically, and socially acceptable.

Prerequisite: MAT 125, MAT 131, MAT 132, or level 6 or higher on math placement exam.

SBC: SBS

3 credits

SBC 116: Introduction to Human Geography
Survey course introduces geography as a social science by emphasizing the relevance of geographic concepts to human problems. Course emphasizes globalization and cultural diversity.

DEC: F

SBC: SBS

3 credits

SBC 117: Design Drawing
This introductory course exposes the student to the fundamental theories and practices employed in visually representing design concepts from observational through technical and speculative drawing. The course content introduces the student to contour drawing, rendering, orthographic projection, and pictorial drawing. Project work engages the student in the application of the above-mentioned drawing techniques and develops skills through the solution of student tailored problems.

DEC: D

SBC: TECH

3 credits

SBC 200: Human Settlement: History and Future
The history of city growth over the millennia as affected by technological change is a basis for understanding the future of human settlement. More than half of the world's population currently lives in cities and urbanization continues on a global scale. The universality of urban development and resulting patterns will be presented as well as limits on growth of cities. Architectonic and socioeconomic planning theories and strategies for sustainable growth are presented. The development of Long Island, which is a microcosm of national and global patterns, will be discussed in detail.

DEC: F

SBC: SBS

3 credits

SBC 201: Systems and Models
Introduction to the dynamic modeling of complex systems. Students will learn to
SBC 206: Economics and Sustainability
3 credits

Prerequisite: MAT 125
DEC: G
SBC: SBS+

SBC 203: Interpretation and Critical Analysis
2 credits

Pre- or corequisite: WRT 102
DEC: H
SBC: CER, HUM, WRTD

SBC 204: Population Studies
3 credits

Prerequisite: MAT 125
DEC: E
SBC: STEM+

SBC 206: Economics and Sustainability
3 credits

Prerequisite: POL 102
DEC: F
SBC: SBS+

SBC 307: American Environmental History
3 credits

Prerequisite: ECO 108
DEC: C
SBC: SBS+

SBC 309: Global Environmental Politics
3 credits

Prerequisite: SBC 111 or ENV 115 or ENS 101 or GEO 101 or permission of instructor
SBC: GLO

SBC 310: Migration, Development and Population Redistribution
3 credits

Prerequisite: SBC 115
SBC: SBS+

SBC 311: Disasters and Society: A Global Perspective
3 credits

Prerequisite: POL 102
SBC: SBS+

ECOSYSTEMS AND HUMAN IMPACT (EHI) - COURSES

Fall 2017

use simulation software that facilitates the visualization, formulation, and analysis of systems. Students will learn about systems with positive and negative feedbacks, the effects lags on system performance, and the difference between stocks and flows. Systems studied will include ecological models, economic models, chemical models, population models, epidemiological models, and models that include the interactions between population, economic development, and the environment.

Prerequisite: AMS 151 or MAT 125 or MAT 131 or MAT 141

SBC 203: Interpretation and Critical Analysis

An introduction to interdisciplinary inquiry and representation in arts, culture, and theory with emphasis on the roles of analysis, argument, and imagination in multiple media. Requires serious engagement with sophisticated texts.

Pre- or corequisite: WRT 102
DEC: G
SBC: CER, HUM, WRTD

SBC 204: Population Studies

The course will present basic mathematics of population growth and introduce various approaches for modeling populations, including population viability analysis (PVA). PVA, the quantitative assessment of the extinction risk of rare species or populations, takes biological information (habitat requirements, birth and death rates, population size) and makes predictions about future population sizes. Real examples will be discussed for a range of organisms, from bacteria to plants and mammals. This course will provide also the background for understanding human population growth. The impacts of human population growth in the developed and developing world on the ecology of other organisms, habitats and systems will also be discussed.

Prerequisite: MAT 125
DEC: E
SBC: STEM+

SBC 206: Economics and Sustainability

Introduction to the basic economic concepts used in sustainability analysis. Students will learn the basic concepts and how to apply them in various context. Topics include the analysis of situations in which the behavior of individuals indirectly affects the well-being of others, strategic behavior and the environment, and the use of market-oriented policies to help in the stewardship of the environment.

Prerequisite: ECO 108
DEC: F
SBC: SBS+

SBC 307: American Environmental History

This course provides an overview of the history of how Americans have used, viewed and valued the natural environment. Beginning with the Indians and the early colonists (15th-16th centuries), the course will examine the cultural, social, economic, political, and technological currents that shaped North Americans' relationships with their environment in early and later industrial eras, after World War II, and finally, in the late 20th and early 21st centuries. Historical snapshots will center on people living in more natural places, such as farms and forests, as well as more built places, such as factories, cities, and suburbs. Events in the northeastern U.S. will provide a geographic focus, but the course will also look at related happenings elsewhere on the North American continent and beyond. Finally, it will examine at the growing array of movements that have identified themselves as 'environmental,' at the 'greenness' of modern culture, and at the environmental dimensions of a globalizing era.

Prerequisite: WRT 102
DEC: K & 4
SBC: SBS+, USA

SBC 308: American Environmental Politics

This course will survey the politics of environmental policy-making in the United States. It examines how contrasting political, economic and social interests and values have clashed and contested with one another, and the exerted power, in the environmental policy realm. The course will explore past precedents and roots, but with a view to explain the shape of this realm in the modern United States, including the many actors and institutions: local, regional and national governments, non-governmental organizations and interest groups, as well as the public. It will look at the main patterns by which these groups have defined environmental problems and formulated and implemented solutions. A chief goal is to illuminate how and why solutions of real-world environmental problems, if they are to be effective, differ from those of scientific or engineering puzzles.

Prerequisite: POL 102
SBC: SBS+

SBC 309: Global Environmental Politics

This course will explore the politics of environmental policy-making within the international realm. Focused especially on environmental dilemmas that cross national boundaries (i.e., pollution), or that are shared by multiple nations (i.e., global warming) it will look at the ways that such problems have been defined and their solutions sought, both with and without an over-arching state or governance. It will survey the many groups, interests and values that have clashed and competed with one another to exert power and influence international environmental policies, as well as the variety of international institutions and agreements that have sought to formulate and implement solutions. One goal is to illuminate how and why effective solutions to global environmental problems differ from those to scientific or engineering puzzles. The course also aims to spur student engagement with the sometimes overwhelming nature of global environmental threats, the tenuous and sometimes counterproductive ways that knowledge and power can be linked, and the ways individuals may act powerfully in service of "sustainability."

Prerequisite: SBC 111 or ENV 115 or ENS 101 or GEO 101 or permission of instructor
SBC: GLO

SBC 310: Migration, Development and Population Redistribution

This course draws upon the contributions of various social and natural sciences (including population and urban geography, demography, political science, sociology, history, economics, public health and environmental sciences) to explore the effects of migratory and demographic shifts on the environment, social welfare, public health, economic development, ethnic diversity, urbanization, public policy and planning. It will examine the political, social, environmental, health and economic effects on sustainability.

Prerequisite: SBC 115
SBC: SBS+

SBC 311: Disasters and Society: A Global Perspective

This class introduces students to the sociological examination of natural, technological, and industrial disasters. Students will explore how and why disasters are fundamentally social events: What do disasters reveal about society? Why are the
human consequences of disasters unequally distributed? What are the typical ways in which states, organizations, and communities respond to disasters? Focusing on case studies from around the world, students will discuss: What are the long-term/short-term causes of particular disasters? What forms of suffering the disasters under consideration generated? What state/civil society actions did they trigger? What advocacy networks were put in place in their aftermath?

Prerequisite: SBC 111, or ENS 101, or GEO 101; POL 102 or SOC 105

DEC: H

SBC: STAS

3 credits

SBC 312: Environment, Society, and Health

This course examines the interactions between environment, social structures, and institutions. The first part of the class examines the ways in which environmental issues are perceived and constructed by various social actors (lay public, state officials, scientists, activists, media). The second part of the class will examine the differential impact of class, race, and gender on the distribution of hazards and risks (what is commonly known as ‘environmental inequality’). In the third part of the class, students will be introduced to different cases of ‘contested environmental illnesses’ (cancer, lead-poisoning, asthma).

Prerequisite: SBC 111, or ENS 101, or GEO 101; POL 102 or SOC 105

DEC: F

SBC: SBS+

3 credits

SBC 321: Ecology and Evolution in American Literature

This course is a review of 19th- and 20th-century American writers who trace the evolution of the US with respect to ecological practices through various multicultural perspectives. Literature covered will include transcendentalist essays, utopian/dystopian novels, ecofeminist fiction, and journalism.

Prerequisite: WRT 102

Advisory Prerequisite: SBC 203

DEC: G

SBC: HFA+, WRTD

3 credits

SBC 330: Extreme Events in Literature

A course that examines the depiction of extreme events (both natural and human-related) in literature, journalism, art, and film, with special emphasis paid to the extended political and social issues that are raised by the events in question.

Prerequisite: WRT 102

Advisory Prerequisite: SBC 203

DEC: G

SBC: HFA+, WRTD

3 credits

SBC 331: City, Suburb, Sprawl

A course that traces the shift from city to suburb to sprawl in texts that span the late-nineteenth century through the early twenty-first century, with special attention paid to phenomena such as industrialization, immigration, mass society, globalization, and postmodern hyperspace. An interdisciplinary set of texts will include works by novelists, artists, architects, and literary theoreticians.

Prerequisite: WRT 102

Advisory Prerequisite: SBC 203

DEC: G

SBC: HFA+

3 credits

SBC 334: Drawing for Design--CAD

Techniques and Theory of Drawing: Architectural Drawing; Learning Computer Assisted Design (CAD). This course will serve as an introduction to CAD tools relevant to design and architectural rendering.

Prerequisite: SBC 117

SBC: STEM+

3 credits

SBC 340: Environment and Development in African History

Provides a critical exploration of the history and political-economy of environmental changes and human activities in Africa from earlier times to the present. It examines the ways in which the dynamics of human-environment relationship have shaped the development of African societies and economies from the rise of ancient civilizations to the contemporary problems of war and famine. Although significant attention will be given to the pre-colonial era (like the impacts of iron-working, irrigation, deforestation and desertification), the focus of the course will be on the 20th and century and after, looking at the impacts of imperialism, colonialism, globalization and the postcolonial quest for development on the state of the environment in Africa. In the discussion, we will demonstrate that the shaping of African environments and ecologies is a product of complex, evolving and interconnected developments between humans and nature within and beyond the African continent.

Offered as both AFS 374 and SBC 374. Not for credit in addition to SBC 320.

Prerequisite: U3 or U4 status

DEC: J

SBC: ESI

3 credits

SBC 475: Undergraduate Teaching Practicum

Work with a faculty member as assistant in a regularly scheduled course. The student must attend all classes and carry out all assignments; in addition the student will be assigned a specific role to assist in teaching the course. The student will meet with the instructor on a regular basis to discuss intellectual and pedagogical matters relating to the course.

Prerequisites: Permission of instructor and undergraduate director

SBC: ESI, EXP+

3 credits, S/U grading

SBC 476: Undergraduate Teaching Practicum II

Work with a faculty member as assistant in one of the faculty member’s regularly scheduled courses. Students assume greater responsibility in such areas as leading discussions and analyzing results of tests that have already been graded. Students may not serve as teaching assistants in the same course twice.

Prerequisites: Permission of instructor and undergraduate director

SBC: EXP+

3 credits, S/U grading