Mechanical Engineering (MEC)
Major and Minor in Mechanical Engineering

Department of Mechanical Engineering, College of Engineering and Applied Sciences

Interim Chairperson: Jeff Ge
Undergraduate Program Director: Robert Kukta
Undergraduate Secretary: Donna Hanson
Email: Donna.Hanson@stonybrook.edu Office: 113 Light Engineering Lab
Phone: (631) 632-8310
Fax: (631) 632-8544
Web address: http://me.eng.sunysb.edu

Minors of particular interest to students majoring in Mechanical Engineering: Science and Engineering (LSE)

Mechanical Engineering (MEC)

Mechanical engineering is one of the core disciplines of engineering and it encompasses a large number of subdisciplines that are at the heart of both traditional and leading edge technologies. It is a broad profession concerned with activities such as energy conversion, power generation, design, and manufacturing. The theoretical and technical bases of knowledge include the pure sciences, mathematics, and the engineering sciences, especially the mechanics of solids and fluids, thermodynamics, and kinematics. Mechanical engineering requires aptitude and interest in the physical sciences and the language of mathematics, and the ability to apply these to societal needs. The Mechanical Engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org .

The educational objectives of the undergraduate mechanical engineering program at Stony Brook University recognize that students have a variety of career objectives and a choice of industrial environments in which to pursue them. While the majority of our graduates are immediately employed in industry, a significant percentage pursues graduate study. Most of the students entering graduate schools continue with mechanical engineering studies. However, some go to law, business, and medical schools. The mechanical engineering curriculum provides students with a core education in mathematics and the physical sciences along with a broad sequence of courses covering thermal processes and fluid mechanics, mechanical design, solid mechanics, and the dynamic behavior and control of mechanical systems. Students also take courses that introduce them to the use of advanced computational methods for engineering design and analysis as well as data processing and analysis. A series of laboratory courses introduces them to sensors and electronics, modern instrumentation and experimental techniques used in engineering for tasks ranging from product design, evaluation, and testing to research. In addition, students can select electives to provide either higher level academic training in preparation for graduate school or a broader exposure to subjects related to engineering practice to enhance their preparation for a job after graduation.

Program Educational Objectives

The educational objectives of the mechanical engineering program are to prepare our graduates to:

1. Prepare graduates for performing their job duties to meet the expectations of employers.
2. Prepare qualified graduates for advanced studies, if desired.

Student Outcomes

The students will demonstrate the following:

(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multidisciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
(l) an ability to apply the principles of mathematics through multivariate calculus and differential equations,
(m) an ability to model, analyze, design and realize physical systems, components, or processes.
(n) an ability to work professionally in both thermal and mechanical systems areas.

Please note that the outcomes (a) through (k) are exactly ABET student outcomes for ALL engineering programs; while outcomes (l),(m),(n) are additional student outcomes we have adopted specific to our program.

Mechanical Engineering (MEC)

Requirements for Acceptance to the Major in Mechanical Engineering
Freshman and transfer applicants who have specified their interest in the Mechanical Engineering major may be accepted directly into the major upon admission to the University. Students not accepted directly may apply for acceptance after completing their first semester at the University. Acceptance is based upon a student’s achievement in 10 or more credits of mathematics, physics, and engineering courses that are taken at Stony Brook and satisfy the Major’s requirements. In these courses, a student must achieve a grade point average (G.P.A.) of at least 3.0 with no more than one grade of a C or lower. Students who do not meet these requirements after two semesters of working towards the Major are disqualified and should not apply. The first semester of working towards the Major will be determined by a student’s first MEC course that applies towards Major degree requirements. All transfer courses used to meet requirements of the major must be completed prior to admission. Students interested in applying for admission are encouraged to talk to the Undergraduate Program Director (listed here).

Requirements for the Major in Mechanical Engineering (MEC)

The major in Mechanical Engineering leads to the Bachelor of Engineering degree.

Completion of the major requires approximately 107 credits.

1. Mathematics
 a. MAT 131, MAT 132 Calculus I, II
 b. AMS 261 Applied Calculus III or MAT 203 Calculus III with Applications or MAT 205 Calculus III
 c. AMS 361 Applied Calculus IV: Differential Equations or MAT 303 Calculus IV with Applications

 Note: The following alternate calculus course sequences may be substituted for MAT 131, MAT 132 in major requirements or prerequisites: MAT 125, MAT 126, MAT 127 or AMS 151, AMS 161 or MAT 141, MAT 142

2. Natural Sciences
 a. PHY 131/PHY 133, PHY 132/PHY 134 Classical Physics I, II and Laboratories
 b. PHY 251 Modern Physics and PHY 252 Modern Physics Laboratory
 or ESG 281 Engineering Introduction to the Solid State
 c. ESG 198 Fundamentals of Engineering Chemistry

 Notes:
 The following alternate physics course sequences may be substituted for PHY 131/PHY 133, PHY 132/PHY 134: PHY 125, PHY 126, PHY 127, PHY 133, PHY 134 Classical Physics A, B, C and Laboratories or PHY 141, PHY 142, PHY 133, PHY 134 Classical Physics I, II: Honors
 The following chemistry course may be substituted for ESG 198: CHE 131 General Chemistry I or CHE 152 Molecular Science I

3. Laboratories
 • MEC 316 Mechanical Engineering Laboratory I
 • MEC 317 Mechanical Engineering Laboratory II

4. Mechanical Engineering
 • MEC 101 Freshman Design Innovation
 • MEC 102 Engineering Computing and Problem Solving
 • MEC 203 Engineering Graphics and CAD
 • MEC 214 Probability and Statistics
 • MEC 220 Practical Electronics Mechanical Engineers or ESE 271 Electrical Circuit Analysis I
 • MEC 225 Fundamentals of Machining Practices
 • MEC 260 Engineering Statics
 • MEC 262 Engineering Dynamics
 • MEC 301 Thermodynamics
 • MEC 305 Heat and Mass Transfer
 • MEC 325 Manufacturing Processes
 • MEC 363 Mechanic of Solids
 • MEC 364 Introduction to Fluid Mechanics

5. Materials Science
 • ESG 332 Materials Science I: Structure and Properties of Materials

6. Engineering Design
 • MEC 310 Introduction to Machine Design
 • MEC 320 Numerical Methods in Engineering Design and Analysis
 • MEC 410 Design of Machine Elements
 • MEC 411 System Dynamics and Controls
 • MEC 422 Thermal System Design
 • MEC 440 Mechanical Engineering Design I
7. Engineering Economics

- MEC 441 Mechanical Engineering Design II
- EST 392 Engineering and Manufacturing Economics or ECO 108 Introduction to Economics

8. Technical Electives

Three technical elective courses are required, two mechanical engineering (MEC) courses and one selected from courses offered by any department of the College of Engineering and Applied Sciences, including MEC. A list of approved technical elective courses may be found in the Department's Undergraduate Guide.

9. Writing and Oral Communication Requirement

- MEC 300 Technical Communication in Mechanical Engineering

Grading

The grade point average of all required MEC courses and all technical electives must be at least 2.00. When a course is repeated, the higher grade will be used in calculating this average. A minimum grade of "C" in MEC 260, MEC 262, and MEC 441 is required for the B.E. degree. Note: in order to satisfy prerequisites for certain required courses, grades of 'C' or higher are needed in the following courses: PHY 131 or PHY 125, AMS 151 or MAT 131 or MAT 125, MEC 101 and MEC 363.

The Minor in Mechanical Engineering

The minor in Mechanical Engineering is offered for students who want the record of their University studies to show a significant amount of upper-division work in the discipline. Entry into this minor presupposes a background in mathematics and physics, represented by the prerequisite requirements for the courses listed below.

Requirements for the Minor in Mechanical Engineering (MEC)

Completion of the minor requires 18-20 credits, of which 12-13 are from required courses and 6-7 from electives. A student who wishes to pursue this minor should consult with the undergraduate program director in the Department of Mechanical Engineering before registering for the elective courses. All courses must be taken for a letter grade and a g.p.a. of 2.00 or higher is required for the six courses that constitute the minor.

1. Four required courses:

- MEC 260 Engineering Statics
- MEC 262 Engineering Dynamics
- MEC 301 Thermodynamics or ESG 302 Thermodynamics of Materials
- MEC 363 Mechanics of Solids

2. Two elective courses chosen from the following:

- MEC 305 Heat and Mass Transfer
- MEC 310 Introduction to Machine Design
- MEC 320 Numerical Methods in Engineering Design and Analysis
- MEC 325 Manufacturing Processes and Machining
- MEC 364 Introduction to Fluid Mechanics
- MEC 393 Engineering Fluid Mechanics
- MEC 398 Thermodynamics II
- MEC 402 Mechanical Vibrations
- MEC 411 System Dynamics and Control
- MEC 455 Applied Stress Analysis

Note: Other electives require the approval of the undergraduate program director.

The Accelerated B.E./M.S. Degree Program in Mechanical Engineering

The accelerated B.E./M.S. program in mechanical engineering allows students to use up to nine graduate credits taken as an undergraduate toward both B.E. and M.S. degree requirements, thus reducing the normal time required to complete both degrees. The program is designed for upper-division mechanical engineering students with superior academic records. For detailed program requirements, including admission requirements, please refer to the Graduate Bulletin.

Sample Course Sequence for the Major in Mechanical Engineering

A course planning guide for this major may be found here.

FRESHMAN
<table>
<thead>
<tr>
<th>FALL</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year Seminar 101</td>
<td>1</td>
</tr>
<tr>
<td>WRT 101</td>
<td>3</td>
</tr>
<tr>
<td>MEC 101</td>
<td>2</td>
</tr>
<tr>
<td>MAT 131 (QPS)</td>
<td>4</td>
</tr>
<tr>
<td>PHY 131/133 (SNW)</td>
<td>4</td>
</tr>
<tr>
<td>HUM course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year Seminar 102</td>
<td>1</td>
</tr>
<tr>
<td>WRT 102 (WRT)</td>
<td>3</td>
</tr>
<tr>
<td>MEC 102</td>
<td>2</td>
</tr>
<tr>
<td>MAT 132</td>
<td>4</td>
</tr>
<tr>
<td>PHY 132 & 134 (SNW)</td>
<td>4</td>
</tr>
<tr>
<td>USA course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>Credits</td>
</tr>
<tr>
<td>MAT 203</td>
<td>4</td>
</tr>
<tr>
<td>PHY 251 & 252 or ESG 281**</td>
<td>3-4</td>
</tr>
<tr>
<td>MEC 203</td>
<td>3</td>
</tr>
<tr>
<td>MEC 220</td>
<td>2</td>
</tr>
<tr>
<td>MEC 260</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 303</td>
<td>4</td>
</tr>
<tr>
<td>CHE 131 or ESG 198 or CHE 152</td>
<td>4</td>
</tr>
<tr>
<td>MEC 262</td>
<td>3</td>
</tr>
<tr>
<td>MEC 363</td>
<td>3</td>
</tr>
<tr>
<td>EST 392 (SBS)</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>Credits</td>
</tr>
<tr>
<td>ESG 332</td>
<td>3</td>
</tr>
<tr>
<td>MEC 225</td>
<td>1</td>
</tr>
<tr>
<td>MEC 214</td>
<td>1</td>
</tr>
<tr>
<td>MEC 301</td>
<td>3</td>
</tr>
<tr>
<td>MEC 310</td>
<td>3</td>
</tr>
<tr>
<td>MEC 316 (TECH)</td>
<td>2</td>
</tr>
<tr>
<td>MEC 364</td>
<td>3</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC 300</td>
<td>1</td>
</tr>
<tr>
<td>MEC 305</td>
<td>3</td>
</tr>
<tr>
<td>MEC 317 (TECH)</td>
<td>2</td>
</tr>
<tr>
<td>MEC 320</td>
<td>3</td>
</tr>
<tr>
<td>MEC 325</td>
<td>3</td>
</tr>
<tr>
<td>MEC 410</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR</th>
<th>FALL</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC 411</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MEC 422</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MEC 440*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical elective #1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>STAS course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC 441*</td>
<td></td>
</tr>
<tr>
<td>Technical elective #2</td>
<td></td>
</tr>
<tr>
<td>Technical elective #3</td>
<td></td>
</tr>
<tr>
<td>ARTS course</td>
<td></td>
</tr>
<tr>
<td>GLO course</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

*This course partially satisfies the following: ESI, CER, SPK, WRTD, SBS+, STEM+, EXP+. For more information contact the CEAS Undergraduate Student Office.

**Current MEC majors can only apply the 4 credit version of ESG 281 towards the major requirement.
MEC

Mechanical Engineering

MEC 100: Introduction to Mechanical Engineering
Introduction to the engineering experience in general and mechanical engineering in particular through lectures by faculty and invited speakers from industry, field trips, films and laboratory demonstrations. Lectures cover creative thinking and problem-solving, design team work, computer utilization, engineering ethics and legal issues, use of libraries and other sources of information, career opportunities in mechanical engineering and related fields, emerging technologies and the cross-disciplinary nature of engineering.
3 credits

MEC 101: Freshman Design Innovation
This course presents an overview of the mechanical engineering profession, engineering ethics, basics of computation via correct usage of dimensions, units, and significant digits, and engineering documentation. Furthermore, this course introduces the students to the process of engineering design and provides a project-based design experience wherein the students design, build, and program a microcontroller driven autonomous mechatronic device. In doing so, they are provided an early exposure to the systematic approach to engineering problem solving that brings together fundamental concepts of forces, motions, energy, materials, manufacturing processes, and machines and mechanisms from mechanical engineering and basic electronics, sensing, actuation, and computer programming.

Pre- or co-requisites: AMS 151 or MAT 125 or MAT 131 or MAT 141 or MPE level 4 or greater and PHY 125 or PHY 131 or PHY 141
2 credits

MEC 102: Engineering Computing and Problem Solving
Introduction to programming with MATLAB. Control structures, arrays and matrix operations, functions, object-oriented programming, interfacing MATLAB with other languages. Projects include applications in solid mechanics, fluid mechanics, thermodynamics and heat transfer, control theory, and basic design concepts. Emphasizes the interpretation of previous analysis in terms of generating results, making quantitative comparisons, and assessing changes that optimize or otherwise maximize the usefulness of the result.

Prerequisite: A grade of C or better in MEC 101
2 credits

MEC 104: Practical Science of Things
A practical introduction to the science and engineering of objects and phenomena in everyday life. The basic principles that underlie the operation common to modern devices such as rollercoasters, balloons, vacuum cleaners, airplanes, bicycles, thermostats, air conditioners and automobiles are developed by investigating how they work. The scientific method, engineering design methodology, safety, and environmental impacts are discussed in the context of these practical applications.

Prerequisite: Satisfaction of entry skill in mathematics requirement (Skill 1) or satisfactory completion of D.E.C. C or QPS
DEC: E
SBC: SNW, TECH
3 credits

MEC 105: Everyday Science and Engineering
A practical introduction to the science and engineering of objects and phenomena in everyday life. The basic principles that underlie the operation common to modern devices such as xerographic copiers, tape recorders, computers, microwaves, lasers, CDs, plastics, nuclear weapons, and magnetic resonance imaging (MRI) are developed by investigating how they work. The scientific method, engineering design methodology, safety, and environmental impacts are discussed in the context of these practical applications.

Prerequisite: Satisfaction of entry skill in mathematics requirement (Skill 1) or satisfactory completion of D.E.C. C or QPS
DEC: E
SBC: SNW, TECH
3 credits

MEC 203: Engineering Graphics and CAD
Introduces engineering graphics and its role in design process. Includes the principles of engineering drawing and sketching for mechanical design, the use of computer graphics and solid modeling in design representation of 3D objects, assembly and simulation as well as ASME standards on geometric dimensioning and tolerances. Includes hands-on experience in the use of CAD software packages for engineering design. Engineering ethics.

3 credits

MEC 204: Practical Science of Things
A practical introduction to the science and engineering of objects and phenomena in everyday life. The basic principles that underlie the operation common to modern devices such as rollercoasters, balloons, vacuum cleaners, airplanes, bicycles, thermostats, air conditioners and automobiles are developed by investigating how they work. The scientific method, engineering design methodology, safety, and environmental impacts are discussed in the context of these practical applications.

Prerequisite: Satisfaction of entry skill in mathematics requirement (Skill 1) or satisfactory completion of D.E.C. C or QPS
DEC: E
SBC: SNW, TECH
3 credits

MEC 213: Studies in Nanotechnology
The emerging field of nanotechnology develops solutions to engineering problems by taking advantage of the unique physical and chemical properties of nanoscale materials. This interdisciplinary, co-taught course introduces materials and nano-fabrication methods with applications to electronics, biomedical, mechanical and environmental engineering. Guest speakers and a semester project involve ethics, toxicology, economic and business implications of nanotechnology. Basic concepts in research and design methodology and characterization techniques will be demonstrated. Course is cross-listed as BME 213, MEC 213, and EST 213 and is required for the Minor in Nanotechnology Studies (NTS).
3 credits

MEC 214: Probability and Statistics for Mechanical Engineers
Foundations of probability and statistics as applied to mechanical measurements and experimentation. Basic statistical analysis of data and assessing likelihood of future events based on past history. Concept of random sampling. Uncertainty analysis and error propagation, using both analytical and graphical tools. Assessing dominant sources of error in measurements.

Prerequisites: MAT 126 or 131 or 141 or AMS 151
Corequisites: MAT 127 or 132 or 142 or 171 or AMS 161
1 credit

MEC 220: Practical Electronics
Mechanical Engineers
This is a lecture and laboratory 2 credit course that will overview basic electronics from a practical level (versus a theoretical approach) to provide mechanical engineering students with the fundamentals to do basic electronics work needed for laboratories, subsequent courses and their professional careers.

Prerequisites: PHY127, PHY132, or PHY142
2 credits

MEC 225: Fundamentals of Machining Practices
Hands-on experience in the fundamentals of machining including metrology tools and devices, saw, sheet metal working, drilling, reaming, tapping, turning, boring, milling, welding, and rapid prototyping. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Pre- or Co-requisite: MEC 203
MECHANICAL ENGINEERING (MEC) - COURSES

Prerequisite: MEC major or permission of instructor
1 credit

MEC 260: Engineering Statics
Prerequisite: PHY 131 or 141 or 125
Corequisite: AMS 261 or MAT 203
3 credits

MEC 262: Engineering Dynamics
Prerequisite: A grade of "C" or better in MEC 260
3 credits

MEC 280: Pollution and Human Health
An examination of major environmental pollution problems such as electromagnetic radiation, ozone layer depletion, and global warming, with a specific focus on the resulting effects on human health. Assessment of health risks in relation to the formulation of environmental and workplace regulations is also considered.
Prerequisite: one D.E.C. E or SNW course
DEC: H
SBC: STAS
3 credits

MEC 300: Technical Communication in Mechanical Engineering
Aims to ensure proficiency in the types of communication necessary for success in the engineering profession. Provides students with the ability to apply their knowledge of correct written and spoken English to the diverse modes of communication encountered and used by engineers in the professional workplace.
Prerequisites: WRT 102; MEC Major; U3 or U4

MEC 301: Thermodynamics
Variables that describe the thermodynamic state of a system or control volume, including absolute temperature, internal energy, enthalpy, and entropy are introduced, and basic principles governing the transformations of energy, especially heat and work, are developed. Underlying principles are used to analyze and solve problems related to thermodynamic systems and to determine the changes in properties of the systems and surroundings implied by changes in inputs, configuration, or constraints.
Prerequisites: AMS 261 or MAT 203; PHY 125 or 131 or 141; MEC Major
3 credits

MEC 305: Heat and Mass Transfer
The fundamental laws of momentum, heat and mass transfer, and the corresponding transport coefficients. Principles of steady-state and transient heat conduction in solids are investigated. Laminar and turbulent boundary layer flows are treated, as well as condensation and boiling phenomena, thermal radiation, and radiation heat transfer between surfaces. Applications to heat transfer equipment are covered throughout the course.
Prerequisites: MEC 301 and 364; MEC 102 or 111 or 112, or ESG 111, or ESE 124, or CSE 114 or 130 or BME 120
3 credits

MEC 306: Numerical Methods in Engineering Design and Analysis
Application of numerical methods for computer-aided solutions to the problems that arise in engineering design and analysis. Methods include interpolation, extrapolation, curve fitting, and integration and techniques solving non-linear equations, systems of linear equations, and differential equations. Optimization in engineering design is covered from the formulation of design specifications and criteria, to analyzable models, through to numerical implementation.
Prerequisites: MEC 102 or MEC 111 or MEC 112 or CSE 114 or CSE 130 or ESE 111 or ESE 124 or BME 120; AMS 261 or MAT 203; AMS 361 or MAT 303
SBC: TECH
3 credits

MEC 310: Introduction to Machine Design
Application of graphical and analytical methods to the analysis and synthesis of mechanism, Covers concepts of degrees of freedom, graphical and analytical linkage synthesis, position, velocity, acceleration, and force analysis of linkage mechanisms. Introduces principles behind the operation of various machine elements such as gears and gear trains, cams, flywheels and their design and analysis techniques.
Prerequisites: MEC 102 or 111 or 112 or CSE 114 or 130 or ESG 111 or BME 120; C or better in MEC 262 (or BME 260 for BME majors)
Pre- or Corequisite: MEC 203 (ESG 316 for ESG majors)
3 credits

MEC 316: Mechanical Engineering Lab I: Sensors and Instrumentation
The spatial and temporal resolution of modern instrumentation and sensors that are particular to mechanical engineering. Concepts of static and dynamic response as well as probability, statistics, and the statistical analysis of data are discussed. Includes basic circuit components. Laboratory safety. Students learn to operate instruments for measuring temperature, pressure, flow velocity, displacement, angle, acceleration, and strain. Design project. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.
Prerequisites: MEC major; C or better in MEC 363; AMS 361 or MAT 303
Corequisites: MEC 214; MEC 220 or ESE 271; MEC 301 and MEC 364
SBC: TECH
2 credits

MEC 317: Mechanical Engineering Laboratory II
Hands-on experience in solid and fluid mechanics and heat transfer. Emphasis is on the understanding of fundamental principles as well as familiarity with modern experimentation. Lectures at the beginning of the course provide background information and theories of experimentation. Student groups perform four experiments each in solid mechanics and in fluid mechanics and heat transfer. Report writing is an integral part of the course, with emphasis on design of experiment, interpretation and presentation of data, error analysis, and conclusions. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.
Prerequisites: MEC 316 and 364
Corequisite: MEC 305 and MEC 300
SBC: TECH
2 credits

MEC 320: Numerical Methods in Engineering Design and Analysis
This course emphasizes the implementation of numerical methods for computer-aided solutions to the problems that arise in engineering design and analysis. Methods include interpolation, extrapolation, curve fitting, and integration and techniques solving non-linear equations, systems of linear equations, and differential equations. Optimization in engineering design is covered from the formulation of design specifications and criteria, to analyzable models, through to numerical implementation.
Prerequisites: MEC 102 or MEC 111 or MEC 112 or CSE 114 or CSE 130 or ESG 111 or ESE 124 or BME 120; AMS 261 or MAT 203; AMS 361 or MAT 303
SBC: TECH
3 credits

MEC 325: Manufacturing Processes

Pre- or Corequisite: MEC 225
3 credits

MEC 363: Mechanics of Solids
Stress and deformation of engineering structures and the influence of the mechanical behavior of materials. Concepts of stress and strain, constitutive relations, analysis of statically indeterminate systems, study of simple bars and beams, and stability conditions. Emphasis on force equilibrium, elastic response of materials, geometric compatibility, Mohr's circle, stresses and deflections in beams, and torsion and buckling of rods. Design for bending, shear, and combined states of stress.
Prerequisite: A grade of "C" or better in MEC 260
3 credits

MEC 364: Introduction to Fluid Mechanics
Fundamental properties of fluids and their conservation laws with applications to the design and evaluation of flows of engineering interest. Topics include hydrostatics, surface tension, dimensional analysis and dynamic similitude, Euler's equation, rotating coordinate systems, boundary layers, lubrication, drag on immersed bodies, open channel and pipe flows, and turbomachinery.
Prerequisite: PHY 126 or PHY 131; MEC 262; MEC or CIV Major
3 credits

MEC 393: Engineering Fluid Mechanics
The application of the principles of fluid mechanics to important areas of engineering practice such as turbomachinery, hydraulics, and wave propagation. Prepares students for advanced coursework in fluid dynamics. Extends the study of viscous effects, compressibility, and inertia begun in MEC 364.
Prerequisite: MEC 364
3 credits

MEC 398: Thermodynamics II
Prerequisites: MEC 301 and 364
3 credits

MEC 400: Research and Nanotechnology
This is the capstone course for the minor in Nanotechnology Studies (NTS). Students learn primary aspects of the professional research enterprise through writing a journal-quality manuscript and making professional presentations on their independent research (499) projects in a formal symposium setting. Students will also learn how to construct a grant proposal (a typical NSF graduate fellowship proposal), methods to search for research/fellowship funding, and key factors in being a research mentor.
Prerequisites: MEC 213; at least one semester of independent research (499 level)
3 credits

MEC 402: Mechanical Vibrations
Modeling, analysis and design for mechanical vibrations. Fundamentals of free vibration, harmonically excited vibration and vibration under general forcing conditions are considered for one degree, two degree and multidegree of freedom systems; continuous systems; vibration design strategies including isolation and absorbers.
Prerequisites: MEC 262 and 363
3 credits

MEC 410: Design of Machine Elements
Application of analytical methods, material science, and mechanics to problems in design and analysis of machine components. Includes the design of mechanical components such as bearings, gears, shafting, springs, fasteners, belts, clutches, and brakes, and takes into consideration factors such as manufacturability and reliability. Design projects with open-ended and interactive problems are assigned to integrate several machine elements in a system.
Prerequisites: MEC 310 and 363
3 credits

MEC 411: Control System Analysis and Design
Analysis and design of feedback control systems. Topics include system modeling; transfer function; block diagram and signal-flow graph; sensors, actuators, and control circuit design; control system characteristics and performance; stability analysis; root locus method; Bode diagram; PID and lead-lag compensator design.
Prerequisites: MEC 262; MEC 316; AMS 361 or MAT 303
4 credits

MEC 422: Thermal System Design
Device design and system design. Quantitative data for system design including operating characteristics of compressors, turbines, heat exchangers, piping systems, internal combustion engines, and other component equipment. Component matching and system simulation. Optimization including thermoeconomic evaluation and energy analysis. Case studies: refrigeration and air conditioning systems, combined cycles, steam-injected gas turbines.
Prerequisite: MEC 305
3 credits

MEC 423: Internal Combustion Engines
Introduction to internal combustion engines and their operation. Analytical approach to the engineering problem and performance analysis of internal combustion engines. Topics include thermodynamics fundamentals; fuel-air cycle analysis; engine combustion; emission formation and control strategies. Includes both the relevant fundamental concepts and the extensive practical knowledge base on which engine research, development, and design depend. Not for credit in addition to MEC 523.
Prerequisite: MEC 305
3 credits

MEC 440: Mechanical Engineering Design I
Part I of the two-semester capstone design project sequence. Senior students select a project with multiple realistic constraints, develop the necessary technical background, and write a proposal, progress reports, and a preliminary design report. Includes an oral presentation on the development and progress of the project. Not counted as a technical elective. The final grade will be assigned at the end of the two course sequence MEC 440-MEC 441. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.
Prerequisites: MEC 225 or 125, MEC 310, 320, and 325; MEC major; U4 standing
Corequisites: MEC 300, 317, 410 and 411
3 credits

MEC 441: Mechanical Engineering Design II

Part II of the two-semester capstone design project sequence. Students complete the project design, incorporating engineering standards, build and test a prototype, write a mid-term report and a final design report, and give an oral presentation. Not counted as a technical elective. This course has an associated fee. Please see www.stonybrook.edu/coursefees for more information.

Prerequisite: MEC 440
3 credits

MEC 442: Introduction to Experimental Stress Analysis
The concepts of three-dimensional stress and strain, their transformation laws, and their mutual relationships are discussed in detail. Results from theory of elasticity as pertinent to experimental stress analysis are also presented. Experimental techniques studied include two-dimensional photoelasticity, resistance strain gauge, moire method, brittle coating, and analog methods. The application of different techniques to the measurement of stress and strain in models as well as actual structures is demonstrated. Students form small groups and each group is assigned different laboratory projects to gain experience in various experimental stress analysis methods. Previously offered as MEC 342.

Prerequisite: MEC 363
3 credits

MEC 450: Mechatronics
An introduction to the design, modeling, analysis, and control of mechatronic systems (smart systems comprising mechanical, electrical, and software components). Fundamentals of the basic components needed for the design and control of mechatronic systems, including sensors, actuators, data acquisition systems, microprocessors, programmable logic controllers, and I/O systems, are covered. Hands-on experience in designing and building practical mechatronic systems is provided through integrated lab activities.

Prerequisites: MEC 310 and 316
3 credits

MEC 455: Applied Stress Analysis
A study of linear elastic solids with emphasis on internal stress analysis. Simple boundary value problems at plane structures are analyzed with various solution techniques. Major topics are stress and strain tensors, linear elasticity, principle of virtual work, torsion, stress functions, stress concentration, elementary fracture, and plasticity.

Prerequisite: MEC 363

3 credits

MEC 456: Introduction to Engineering Mechanics of Composites
Introduction to the engineering mechanics of fiber reinforced composites. Brief history of the development of fiber composites, their properties, advantages, limitations and applications. Overview of the different types of composites but with focus on long fiber reinforced composites; particularly, lamina and laminate concepts characteristics and configurations. Topics covered include: elastic properties of unidirectional lamina, strength of unidirectional lamina, elastic behavior of multidirectional laminates and stress and failure of multidirectional laminates. Design methodologies and considerations for structural composite materials.

Prerequisite: MEC 363
3 credits

MEC 457: Engineering Composites Fabrication and Characterization
Overview of fiber reinforced composites, applications and mechanical properties. Introduction to fiber composites fabrication methods as well as experimental characterization methods used in acquiring their relevant mechanical properties. Fabrication topics include: impregnation of fibers; prepregs; stacking; curing; vacuum bagging; autoclave technology; out-of-autoclave manufacturing processes; molding; processing; cutting and joining. Topics in mechanical characterization include: experimental methods; characterization of the elastic properties and failure strengths of unidirectional lamina; characterization of the elastic properties and failure strengths of multidirectional laminates. Course is divided into in-class lectures and laboratory sessions.

Prerequisite: MEC 363
3 credits

MEC 458: Mechanical Engineering Practicum
Students assist the faculty in teaching by conducting recitation or laboratory sections that supplement a lecture course. The student receives regularly scheduled supervision from the faculty instructor. May be used as an open elective only and repeated once.

Prerequisites: U4 standing; a minimum g.p.a. of 3.00 in all Stony Brook courses and the grade of B or better in the course in which the student is to assist; permission of department
SBC: EXP+ 3 credits

MEC 464: Fundamentals of Aerodynamics
Kinematics and dynamics of incompressible irrotational flow; stream function and the potential function; Euler and Bernoulli equations. Thin-foil theory; lift and moment for symmetric and cambered airfoils. Finite-wing theory; induced drag. Compressible flow, small-disturbance theory; thin wings at subsonic and supersonic speeds.

Prerequisites: MEC 305; MEC 310; MEC 364
3 credits

MEC 465: Aerospace Propulsion

Prerequisites: MEC 305; MEC 310; MEC 364
3 credits

MEC 470: Introduction to Tribology
Focus is on the fundamentals of tribology, the science of surfaces in relative motion, with an introduction to friction, lubrication, and wear. The basics of tribology science: engineering surfaces, contact mechanics, lubrication theory, wear processes and modeling, wear properties of materials, and tribology test methods will be covered. Analysis of tribological aspects of machine components and bearings. Industrial case studies will be presented to place the topics in context to industry and society.

Prerequisites: MEC 363 and 364
3 credits

MEC 475: Undergraduate Teaching Practicum
Participation in off-campus engineering practice. Students are required to submit a proposal to the department at the time of registration and two term reports before the end of the semester. May be repeated up to a limit of 12 credits.

Prerequisite: Permission of undergraduate program director
SBC: EXP+ 3-9 credits, S/U grading

MEC 491: Topics in Mechanical Engineering
Treatment of an area of mechanical engineering that expands upon the undergraduate curriculum. Topics may include advanced material in a specialty, development of a specialized experimental technique, or a
specific area of design. Topics may vary from semester to semester. Semester supplements to this Bulletin contain specific description when course is offered. May be repeated as the topic changes.

Prerequisite: U3 or U4 standing in a B.E. degree major; permission of department (course prerequisites vary with topic)

1-4 credits

MEC 492: Topics in Mechanical Engineering

Treatment of an area of mechanical engineering that expands upon the undergraduate curriculum. Topics may include advanced material in a specialty, development of a specialized experimental technique, or a specific area of design. Topics may vary from semester to semester. Semester supplements to this Bulletin contain specific description when course is offered. May be repeated as the topic changes.

Prerequisite: U3 or U4 standing in a B.E. degree major; permission of department (course prerequisites vary with topic)

1-4 credits

MEC 495: Professional Engineering Seminar

Prepares the student to enter the workplace as a practicing engineer. Topics include professional ethics, professional activities, professional engineering licensing, patents, seeking entry-level employment, and exposure to the engineering work environment. Aids in preparation for the EIT/FE exam. Includes speakers from a variety of disciplines, within the College and from industry.

Prerequisites: CEAS major; U4 standing

1 credit, S/U grading

MEC 499: Research in Mechanical Engineering

An independent research project under the supervision of a mechanical engineering faculty member. Permission to register requires the agreement of the faculty member to supervise the research and submission of a one-page research proposal. May be repeated but only six credits of research electives may be counted as technical electives.

Prerequisite: Permission of department

0-3 credits