EST

Technology and Society

EST 500: Foundations of Educational Technology for Administrators
This course is designed to teach administrators basic principles surrounding educational technology throughout the school and/or district. Students will explore and discuss critical issues surrounding technology in education. Students will understand administrative technology applications, web 2.0 presentation tools, Internet protocol, cybersafety and cyberbullying, Google Apps, social networking, collaboration tools, portable devices and app tools. The semester project for this course is the development of a needs assessment and research of an educational technology for your school/district.
3 credits, Letter graded (A, A-, B+, etc.)

EST 501: Educational Technology Integration for Administrators
This course is designed to teach administrators how to integrate educational technology within their school/district. Students will understand ISTE Technology Standards for Administrators, the National Technology Plan and the Common Core Standards in relation to educational technology. Students will explore distance education, media streaming and communication tools such as Twitter and Facebook. They will review management systems, data collection/analysis tools and technology funding resources. Students will also learn how to evaluate technology integration throughout their school and/or district. The semester project for this course is the development of an implementation plan and the evaluation of an educational technology that may be used in your school or district.
3 credits, Letter graded (A, A-, B+, etc.)

EST 520: Computer Applications and Problem Solving
A problem-solving course for professionals who use applications software to address administrative and managerial problems. Students develop skills in planning, forecasting, and MIS requirements. The major applications software packages used are Excel and Access. Students learn to create advanced-level spreadsheets and data files, and use them to find optimal solutions to problems in all professions.
Summer, 3 credits, Letter graded (A, A-, B+, etc.)

EST 521: The Social and Global Impact of Technology in Education
This course will explore educational systems and practices globally and how the use or lack of use of technology within education impacts society. Inversely students will research how society dictates the use or lack of use of technology in education within the specified educational system. Throughout the course, students will focus on one region of the world and research the current educational system and specifically how they use technology within education. In their research they will find out what technology is available within the educational system, how that technology is used, explore the effectiveness of the technology and research the social impact of that technology use. Students will connect with a global participant via distance communication or video conferencing to gain real world knowledge of the educational system and the use of technology for the specified region. The culminating project is a research based project that assesses the use of technology within the selected global region, offers solutions on how to improve the use of technology and compares that system and the use of technology with our own use of technology locally in our current educational system.
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 522: Integrating Educational Technology into Social Studies and Language Arts
Students will learn how to integrate technology into Social Studies and Language Arts curriculum using the ISTE/NETs standards and the National Technology Plan to aid in the delivery of instruction. Students will develop an educational technology workshop focused on the Math and Science Core Curriculum and subject related needs. Students will meet with a group of Math and Science educators, assess their needs, design an educational technology workshop around those needs and deliver the workshop to the educators. The culminating activity for this course is to conduct the developed workshop to a group of Math and Science educators. After the delivery of the workshop, students will work with the instructor and classmates to evaluate the delivery and content of the lesson as well as assess the outcome and results of educator learning.
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 524: The Role of Educational Technology Specialist
In this course students will learn the role and responsibilities of an Educational Technology Specialist. Students will connect with an administrator and work with the course instructor to develop a year-long technology integration plan. The development of the plan will include: a data driven needs assessment based on current goals and technology available, use of that data to address specific technology/curriculum needs, the integration plan proposal, creation of a professional development plan using workshops, push-ins or one-on-one sessions to deliver instruction and a peer evaluation of the effectiveness of the proposed technology integration plan. In addition, students will learn how to infuse the ISTE Standards and the National Technology Plan into the curriculum, research new technologies and educational resources, and understand the social, political, ethical and legal issues surrounding educational technology.
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 530: Internet Electronic Commerce
Topics addressed in this course include: technology infrastructure, business models and concepts, technological skills needed to build an E-Commerce web site, marketing, communications, security and encryption, payment systems in E-Commerce/M-commerce. Financial transactions, advertising models, content ownership and the prospects for E-Commerce are also covered.
Summer, 3 credits, Letter graded (A, A-, B+, etc.)

EST 531: Virtual Distance Management Course
In today's global corporations, the challenges associated with leadership and management has grown increasingly difficult and complex. More and more, companies are using networked organizational models to deliver work and interact with customers. As globalization and diffused networks of people and companies combine, issues related to virtual/distributed employees, partners and customers have moved front and center. Implications for leadership has grown beyond current skill sets drawn from traditional academic fields and training programs.

EST 540: Environmental Management
This is an introduction to environmental management, and will focus on the interplay between science and public policy. Concepts include problem identification and definition, collection and analysis of relevant data to produce information, and the roles of public perception and action in ultimately determining outcomes when consensus is not reached. Specific fields to which these concepts will be applied will be solid waste management and coastal management. Current local problems will be used to illustrate the broader conceptual issues. Offered as MAR 514 and HPH 672. Prerequisite: Permission of instructor.

Offered in
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

EST 541: Long Island's Groundwater
This course will cover basic groundwater concepts in unconsolidated sediments, and examine contamination issues in light of Long Island's particular hydrogeology, land use, and waste management history. Mathematical principles will be discussed but not stressed; scientific and technical papers discussing particular concepts or problems, including important local examples, will be closely read.

Prerequisite: Permission of instructor. Offered as MAR 521 or HPH 673.
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 542: Water and Wastewater Engineering Practices
This course will provide basic engineering concepts and practices associated with water supply and wastewater management, with an emphasis on New York metropolitan area technologies. Topics covered will include water supply and distribution, wells, water quality testing and regulation, onsite, package and standard wastewater treatment, and stormwater collection. Policy issues considered will include source water protection and wastewater impact mitigation programs.

Offered in
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 546: Financing A Low Carbon Society
The sums involved in a shift to a low-carbon society are daunting but not impossible to achieve. The world is planning to invest over $15 trillion in fixed-asset investments in the next 10 years. Rather a problem of capital generation, the key challenge of financing the transition towards a low carbon society is to redirect existing and planned capital flows from traditional high-carbon to low-carbon investments. This course is designed to allow students to: (1) Review a number of public finance mechanisms and market-based instruments designed to shift investments from fossil fuels to more climate friendly alternatives over the past few years; (2) Gain knowledge of the global commercial, political, innovation and technological challenges and opportunities in the transition to a low-carbon society; (3) Develop and practice professional skills in raising and spending public finance to catalyze capital towards low carbon and climate resilient development; and (4) Develop and practice professional skills in accessing carbon finance and designing innovative financing instruments.

This course is aimed at engineering students who are interested in the energy challenges in a carbon-constrained world and their implications to technology innovation; at business-and public-administration students and at mid-career professionals who want to develop innovative financing solutions to real-world energy and environmental problems.

Summer, 3 credits, Letter graded (A, A-, B+, etc.)

EST 547: Advanced Problems in Integrated Planning: Theory, Practice, and Analytical Tools
This course explores in depth new theories and practical applications of integrated planning through the lens and land use, transportation and urban infrastructure systems. A series of problem sets is undertaken in close coordination with the instructor to produce a portfolio of networked research which, with further research, can be publishable quality.

Offered
Summer, 3 credits, Letter graded (A, A-, B+, etc.)

EST 550: Introduction to Homeland Security
The course is a combination of lectures and laboratory experience to introduce students to critical issues and assess needs for homeland security. The course includes invited lectures by experts on special topics such as fundamentals of nuclear, chemical, and biological weapons and the associated threat to the transportation of goods and the public. The students will learn about cyber security, devices to safeguard materials from terrorist threats, safety of nuclear power plants and water supply, forensics and emergency preparedness. The students will submit a term paper on a selected topic in lieu of the final exam.

Prerequisites: Undergraduate level biology, chemistry and physics.

Fall and Spring, 3 credits, Letter graded (A, A-, B+, etc.)

EST 553: Nuclear Security
The course will familiarize students with the fundamentals of nuclear physics, radiation, mining, weapons and fuel cycle, other than producing electricity, as it pertains to nuclear power plants. Topics include nuclear detection, devices to safeguard nuclear materials from terrorist threats, needed physical protection for safe handling and its relevance to Homeland Security. The course combines lectures with hands-on experience at the newly installed nuclear detection facility located at the nearby United States Department of Energy's Brookhaven National Laboratory.

Prerequisite: Undergraduate equivalent physics and chemistry.

Fall, 4 credits, Letter graded (A, A-, B+, etc.)

EST 554: Chemical & Biological Weapons: Safeguards and Security
This course deals with the fundamentals of chemistry and biochemistry related to chemical weapons (CW) and biological weapons (BW) that could be used by terrorists. Topics include CW and BW history, production, control, detection, identification, and emergency response measures to deal with intended or unintended release and escape, and security measures to protect and control stockpiles.

Prerequisite: Undergraduate equivalent chemistry, biochemistry, and microbiology.

Fall, 4 credits, Letter graded (A, A-, B+, etc.)

EST 556: Risk Assessment, Regulation, and Homeland Security
The course focus is on risk assessment associated with nuclear, chemical and biological weapons as it relates to Homeland Security. Topics include air dispersion, uncertainty analysis, exposure measurements, epidemiology, toxicology, regulatory issues, risk management, risk communication, risk perception, and risk preparedness. The course will also cover laws and regulation, discouraging terrorism, and disaster.
EST 562: Decision Support Systems

A decision support system (DSS) is a computer system that combines, data, analytical tools, and models to support decision making. A DSS may be model-driven or data-driven. A model-driven DSS is a stand-alone system that uses some type of model to perform what-if# and other kinds of analysis. A data-driven DSS is a system that supports decision making by allowing users to extract and analyze useful information that was previously buried in large databases. In this course, both model-driven and data-driven decision support services will be considered. Students will identify an appropriate engineering or management application. By collecting relevant data, building suitable mathematical models, designing an accessible user interface, and connecting these components via computer code, students will develop a deliverable DSS. Through a series of presentations, they will demonstrate how their DSS addresses the stated engineering or management problem. In doing so, students will gain insight into the interrelationships among information systems, statistics, and management science.

Prerequisite: EMP 504 or permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

EST 563: Computer Literacy for Educators

This course is an introduction to computer and software basics and was formally listed as EST 583. Students will develop an understanding of the underlying concepts and principles behind computers. Students will gain sufficient knowledge to successfully navigate the digital world. Emphasis will focus on computer literacy areas used in education and other professional environments. Students will leave this course with the ability to grasp the risks and benefits surrounding new and current computer technologies. The following skills will be addressed: electronic communication, application-based projects, information management, assessment, and the societal impacts of computer based technologies. Students having completed EST 563 in a prior semester can not receive credit for EST 563. EST 563 and EST 565 may be taken in the same semester.

Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 565: Foundations of Technology in Education

Throughout this course students will explore the basic pedagogical issues and social impact of using technology in education. This course examines the basic principles of integrating technology and computer applications into the curriculum. Students will learn how to use and integrate word processing, spreadsheet, and presentation applications for educator planning and student project work. Students will also learn how to use a number of online based Web 2.0 applications within school curriculum. The culminating activity for this course is the design and a presentation of a micro-lesson using one these applications as they would in the classroom.

Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 567: The Internet, Social Networking and Collaborative Environments

In this course students will learn the basic principles of using the Internet for instruction, the science and engineering concepts behind modern communication systems and their impact on education as well as the evolution of the Internet in education. Students will design and create a website and explore the use and social impact of collaborative learning environments and social networking. Students will learn how to evaluate and effectively integrate a variety of educational resources, such as web 2.0 tools and modern communication devices for active learning. Students will also develop a clear understanding of the issues surrounding cybersafety, cyberbullying, and the ethical issues raised by the use of technology in education. The culminating activity for this course is the development and publishing of a collaborative website that showcases the material and skills mastered throughout this course.

Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 568: Networked Communication Technologies

EST 568 Network Communication Wired and Wireless

This course examines the range of technologies used in teaching, learning, and communication. Instructional technologies both stand-alone and networked are surveyed with a focus on how they can be used effectively to enhance learning. Students will learn fundamental hardware and software principles underlying the development of the Internet and other networked communications tools. Emphasis will be placed on assessment of these technologies in terms of societal impacts and learning outcomes. This course combines topics from EST 565 and EST 567.

Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 569: Technology in the City

Will technology transform our cities, making them more livable, efficient, and desirable? Will technology those our cities, making them more dangerous, chaotic, and unsellable? This course is at the intersection of two trends. First, the world is undergoing a wave of urban growth. Second, the pace of technological change is quickening and, with it, the pace of social change and even social transformation. Course modules will cover technology and society in urban contexts with particular attention to: 1) energy, 2) environments, 3) transportation, and 4) health and human safety (including security). This class will involve trips to sites in New York City, and will involve the use of IT technologies in creative ways to advance our learning.

Offered
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 570: Educational Technology Lesson Development

In this course students will learn principles of instructional design and how to fully integrate technology into daily curriculum. Throughout the course students will plan, develop, and evaluate a lesson plan that demonstrates an expertise in the integration of educational technology. Students will apply the skills, techniques, resources and research necessary to effectively create an educational technology inspired lesson plan. The lesson plan may include the use of emerging technologies, distance learning, multimedia projects, collaborative environments, computer applications and Internet resources. The culminating project for this course is the completion of a lesson plan in a specific content area that incorporates multiple modalities of technology into pedagogical practices.

Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 571: Educational Technology Research Methodologies

This course evaluates the impact and value of educational technology uses through detailed research based on a number of current topics. Course goals include understanding research methodology and literature and exploring assessment design and implementation. The course includes class discussions and project work based on student learning with technology, access and the digital divide, the National Education Technology Plan, Internet literacy, emerging technologies, virtual schools, and data driven research.
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 573: Interactive Multimedia Curriculum Design and Development
This course allows students to learn how to use a variety of multimedia tools for the classroom. Principles of user interface and interaction design will be covered. Throughout the course students design an interactive unit plan using multimedia authoring software. Students will work with audio/video editing software, collaborative learning software, and learn how to embed online games, activities and video within their unit plan. Development of the interactive multimedia unit requires students to: submit a proposal, use graphic organizers to plan and design, create a draft version, create assessment tools, test market with a specific target audience, then evaluate the unit before the final version is completed. The culminating activity is the presentation and delivery of the finished interactive multimedia unit.
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 574: Distance Learning and Virtual Environments
Web-based distance learning applications are quickly growing within higher education institutions, K-12 schools, and corporate environments. The focus of this course is on the underlying theories, design, and implementation of effective modes of e-learning. Students will explore virtual schools, virtual learning, virtual environments and other forms of distance education. The social differences between face-to-face and virtual learning will also be examined and discussed throughout the course. Students will explore virtual learning resources and design their own virtual learning lesson. The culminating project for this course will be the demonstration and write up of the experience.
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 575: Developing Grants and Managing Projects
This course will develop the skills necessary to take a program proposal from idea through reality with an emphasis on new technological resources available to help with this process. Topics include: techniques for successful fundraising, grant writing, program design, staffing, publicity and outreach, and reporting and evaluation. It is designed for current educators and administrators as well as students about to enter the education, social service and health fields.
3 credits, Letter graded (A, A-, B+, etc.)

EST 576: Geographic Information Systems in Education and Research
Students use Geographic Information Systems (GIS) software to create, manipulate and interpret layers of interactive maps and databases. Students collect and modify geographical materials from the Internet, satellite and aerial imagery, and field data. They design and test scientific inquiry-driven educational modules and/or visualizations for research and analysis on global and local geography, for use in economics, earth science, politics and civic action, history and sociology, global studies, and environmental planning and assessment. Prerequisite: EST 565 or EST 595 or permission of instructor.
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

EST 577: Environmental Information Systems (EIS)
Due to the complex nature of environmental and spatial data, these systems require state-of-the-art computer technology to achieve environmental science and information technology. This course will address the technical and conceptual bases of data capture, data storage, data analysis and decision support, and metadata management. This course will address the technical and conceptual bases of data capture, data storage, data analysis and decision support, and metadata management. Environmental Information Systems are concerned with the management of data about the rock of soil, the water, the air, and the species around us.
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

EST 578: Human-Computer Interaction Design for Construction
Principles of human-computer interaction applied to the design of educational courseware. Usability engineering, with a focus on the audience and learning objectives. Interface design principles. Human computer dialogs. Multimedia as a communication tool, using images, audio and video. Multimodal input devices and strategies. Students will use a multimedia authoring tool to create a prototype of an educational application or learning tool.
3 credits, Letter graded (A, A-, B+, etc.)

EST 579: Educational Games
Simulations and computer games as a learning tool. Traditional game and simulation genres, and their appropriate uses in education. Gameplay design. Game development process, from storyboarding to delivery. Assessing games as learning tools. Students will use a multimedia tool to prototype an educational game or simulation of their own design.
3 credits, Letter graded (A, A-, B+, etc.)

EST 580: Advanced Technology Assessment: Business, Government and Strategy
This course has a two-fold objective: (1) to help students develop strong conceptual foundations for understanding and addressing issues at the intersection of science, technology, public policy, and business strategy; and (2) to provide students with knowledge of analytical frameworks and tools that are essential to technology assessment in business, government, and government, and other organizations with understanding of their strengths, limitations, and underlying assumptions. Topics covered include utility/profit maximization theory, its limitations and alternative theories, business and government interactions, technology innovation and management, technology forecasting, impact assessment, technology valuation, and basic tools for technology assessment (monitoring, simulation, expert opinion, scenario analysis, cost-benefit analysis, AHP method, etc.).
Summer, 3 credits, Letter graded (A, A-, B+, etc.)

EST 581: Methods of Socio-Technological Decision Making
Focus is on the application of decision-making techniques to analyze problems involving technology, particularly its social impacts. Areas of study include decision making under uncertainty, decision making in a passive vs. active environment, sequential decisions, estimating payoffs, forecasting, and technology assessment. These systems-analysis techniques are used to formulate and solve a variety of socio-technological problems, especially those that arise in educational, industrial, and environmental professions.
Prerequisite: Graduate standing in department or permission of instructor.
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 582: Systems Approach to Human-Machine Systems
General systems theory concepts such as feedback, stability, tipping point, resilience, recursion, hierarchy, and complexity will be discussed, and used to analyze examples of complex systems drawn from nature, business, technology, and education. The course will address the use of feedback, information and communication, structure, and cybernetics to manage complex systems. Students will prepare a study of a complex system and its management incorporating these general concepts. Offered as EST 582 and HPH 662.
3 credits, Letter graded (A, A-, B+, etc.)
EST 584: Air Pollution and Air Quality Management
The effects of air pollution on the environment and public health are explored. Primary pollutants, such as particulates, oxides of sulfur, nitrogen and carbon, hydrocarbons, lead and CFCs are considered, as are secondary pollutants, such as sulfuric acid, PAN, and surface ozone. The effect of atmospheric conditions on the dilution and dispersion of pollutants and the impact of pollution on the global atmosphere are explained. Air pollution disasters and the impacts and ramifications of the Clean Air Act of 1970, its 1990 amendments, and recent international accords are discussed. Case studies of air pollution reduction, management, and regulation in local industry are included. Other contemporary topics include the loss of stratospheric ozone and global warming due to human activities. Cross-listed as EST 584 or HPH 683. Spring, 3 credits, Letter graded (A, A-, B+, etc.)

EST 585: Assessment of Technology in Learning Environments
This course is designed to provide educators with an overview of the uses of technology to improve instruction. Students will understand the design and function of learning environments, individual applications related to the student's area of professional practice, and assessment of educational uses of technology today and tomorrow. Students will choose a current technology used in a specific learning environment and analyze and evaluate its effectiveness within instruction including practical classroom use and staff development for the particular technology. Students will then research and make recommendations on how the particular technology could be integrated most effectively to increase teacher understanding and enhance student learning. Students then present their findings about the current use of the chosen technology, possible improvements on its use as well as future technology recommendations. Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 586: Environmental and Waste Management in Business and Industry
Environmental and waste management practices in industrial and other institutional settings. Technologies of hazardous waste prevention, treatment, storage, transportation, and disposal are considered. Topics include information systems and software tools for environmental audits, regulatory monitoring and compliance, cost estimation, recycling programs, air, land and water emissions controls and permits. Employee health, safety, and education and quality management and examined. Field trips to several Long Island institutions. 3 credits, Letter graded (A, A-, B+, etc.)

EST 587: Today's Technology: Impact on Education and Economics
This course involves the student in studies of the science, technology, and economics of four selected areas: electronics, transportation, energy, and health sciences. Classroom time is supplemented by visits to appropriate facilities in each area; individuals and groups also plan for the use of the information in their specific areas of responsibility. For example, teachers are responsible for developing teaching strategies for use of the information in their classes and for student career advice and preparation. Those from commerce and industry learn of the powerful influence of technological development on regional economics. This knowledge is helpful in carrying out strategic planning and forecasting within the student's organization. 3 credits, Letter graded (A, A-, B+, etc.)

EST 588: Technical Communication for Management and Engineering
The ability to communicate technical ideas clearly and effectively is critical to success in management and engineering. Hours and money are wasted when confused, distorted writing and speaking obscure the information they are intended to convey. This course will provide managers, engineers, and other technical professionals with practical methods for making their memos, reports, and correspondence clear, comprehensible, and persuasive. Students learn strategies for communicating with both nonspecialist and technical audiences, stating their purpose clearly, organizing points most effectively, and expressing ideas concisely and precisely. Special attention is given to technical presentations and to communicating in meetings. 3 credits, Letter graded (A, A-, B+, etc.)

EST 589: Technology-Enhanced Decision Making
This course examines the use of technological devices, especially computers, as aids in decision making. A treatment is given of the cognitive science and artificial intelligence methods used in the structure and operation of some systems that support human decision making. Medical diagnosis systems, business and industrial planning systems, and computer-aided dispatch systems are discussed. In addition, the application of high technology in air traffic control systems is examined. 3 credits, Letter graded (A, A-, B+, etc.)

EST 590: Seminar for MS, TSM Students
A forum for the discussion of research methods, project ideas, and proposal preparation. A final product of this seminar is an approved master's project proposal. Each student also leads a discussion of an important technology-society problem, such as censorship of the Internet, scientific decision making, or environmental regulations. Each student works with a faculty advisor on background research and preparation of the master's project proposal. Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 591: Independent Study in Technology and Society
The primary objective of independent study is to provide a student with opportunities to interact with faculty members who can be of assistance in his or her master's project. Students should consult individually with faculty members on workload and credit(s). 1-3 credits, Letter graded (A, A-, B+, etc.) May be repeated for credit.

The ample supply and appropriate use of energy is critical to the well being of human society. Energy plays an enormous role in environmental degradation, national insecurity, international conflict, and in solutions to these problems. This course aims to introduce the major energy issues to students in engineering, business, and public policy areas. It discusses the energy choices to meet regional and global energy needs. Major renewable and conventional energy sources, energy supply technologies, and end-use efficiency options will be assessed in the context of political, social, economic, and environmental goals. 3 credits, Letter graded (A, A-, B+, etc.)

EST 593: Risk Assessment and Hazard Management
A case-study approach to the assessment of risk and the management of natural and technological hazards, with emphasis on those that can harm the environment. The course focuses on technological hazards involving energy, transportation, agriculture, natural resources, chemical technology, nuclear technology, and biotechnology, and on natural hazards such as climatic changes, droughts, floods, and earthquakes. The first part of the course consists of readings on risk assessment and hazard management and discussions of published case studies. During the second part
of the course, students conduct Offered as EST 593 or HPH 686.
3 credits, Letter graded (A, A-, B+, etc.)

EST 594: Diagnosis of Environmental Disputes

Diagnosis of disagreements about environmental and waste problems. Tools for evaluating disputes about (a) scientific theories and environmental models, (b) definitions and analytical methodologies for estimating risk, "real" cost, net energy use, and life-cycle environmental impact, (c) regulatory and legal policy, (d) siting of controversial environmental facilities, and (e) fairness and other ethical issues. These diagnostic tools are brought to bear upon case studies of pollution prevention, recycling, nuclear waste disposal, and climate change.
3 credits, Letter graded (A, A-, B+, etc.)

EST 595: Principles of Environmental Systems Analysis

This course is intended for students interested in learning systems engineering principles relevant to solving environmental and waste management problems. Concepts include compartmental models, state variables, optimization, and numerical and analytical solutions to differential equations.
Prerequisites: MAT 132 and one year of quantitative science such as physics, chemistry, or geology; or permission of instructor. Offered as EST 595 or HPH 688. Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 596: Simulation Models for Environmental and Waste Management

This course is intended for students interested in developing computer models for technology assessment and for environmental and waste management. Concepts developed in EST 595 Environmental Systems Engineering and Analysis are applied to real-world problems. Techniques in model development are presented in the context of applications in surface and groundwater management, acid rain, and health risks from environmental contamination. Offered as EST 596 or HPH 689.
Prerequisite: EST 595 or permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

EST 597: Waste Management: Systems and Principles

Students will learn about the technologies and policy options in waste management, emphasizing recycling, incineration, landfilling, and source reduction options for municipal solid waste on Long Island. Problems concerning paper, glass, plastic, organic materials, and other waste stream components will be explored. Environmental impacts and economics of landfills, materials recovery facilities, and waste-to-energy systems are examined. The institutional and regulatory climate, current and planned practices in the region, and hazardous waste will be discussed.
3 credits, Letter graded (A, A-, B+, etc.)

EST 598: Teaching Practicum

Designed to give graduate students teaching experience.
3 credits, S/U grading

EST 599: Special Projects and Topics

A technology assessment laboratory for emerging problems and focused research. May be run as a hands-on, group research study of an important educational, environmental or waste problem (perhaps to provide an assessment to a regulatory agency or administrative system).
1-12 credits, Letter graded (A, A-, B+, etc.) May be repeated for credit.

EST 600: Technology, Policy, and Innovation: Theory and Practice

This course provides students with frameworks and models for analysis of issues at the intersection of science, technology and public policy, and business strategy; and helps students develop skills to work on policy issues that require deep understanding of the technical details. Topics include utility/ profit maximization theory, its limitations and alternative theories, business and government interactions, technology innovation and management, policy process (agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, evaluation of policy outcomes). Cases drawn from energy and environmental policy, educational technology, STEM education will be used to illustrate stakeholders and their value structures, high levels of uncertainty, multiple levels of complexity, and their influence on policy intervention. This course emphasizes quantitative policy analysis methods, and critical thinking.
Fall, 4 credits, Letter graded (A, A-, B+, etc.)

EST 610: Data Analysis for Technology, Policy and Innovation

Common empirical tools used for research in Technology, Policy, and Innovation. Topics include: data collection and sampling techniques, descriptive statistics, probability concepts, estimation, formulating and testing hypotheses, and simple and multiple regression analysis. Discussion of assumptions, strengths and weaknesses of various statistical tools and methodologies. Emphasizes the analysis and presentation of information through visual and numerical means. Use of modern statistical software to analyze real data sets involving socio-technological applications.
Prerequisites: Admission to PhD program or permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

EST 620: Decision Making in Socio-Technological and Global Contexts

Methodologies and applications to enhance students’ abilities to use qualitative and quantitative approaches to examine decision problems within socio-technological and global contexts. Psychological, social and cultural influences on decision making in organizations. Power and limitations of the theories, models and tools of decision analysis. Applications to decision problems in a variety of areas, including energy and environmental systems, educational technology and education in science and engineering, technology management, and science and technology policy.
3 credits, Letter graded (A, A-, B+, etc.)

EST 650: Directed Study

Individual studies under the guidance of a faculty member. Subject matter varies according to the needs of the student. May be repeated for credit.
1-9 credits, Letter graded (A, A-, B+, etc.) May be repeated for credit.

EST 680: Teaching, Learning, and Technology

A professional development seminar that is designed to help Ph.D. students develop the competencies needed to become effective teachers in colleges and universities. Students will learn relevant teaching and learning theories and their applications to teaching courses and laboratory sessions. Students will learn methods for the design and assessment of courses, including courses that integrate appropriate technologies to enhance learning and teaching. Students will learn how to create learning environments that build on the strengths and address the varied needs of a diversity of learners. Restricted to Ph.D. students registered in the Certificate Program on College Teaching. Fall and Spring, 0-3 credits, Letter graded (A, A-, B+, etc.)

EST 688: Internship in Research
Innovation is viewed as central to progress for any individual, organization, nation or global effort. In this seminar we will discuss invention, the two main phases of innovation, exploration and exploitation, the notion of diffusion of innovation and finally innovation policy as well as policy innovation. We will explore the many different sides of innovation, why it is one of the most critical issues of our time and how seminar participants can contribute to overall innovative efforts.

EST 697: Directed Study

Individual studies under the guidance of a faculty member. Subject matter varies according to the needs of the student.

1-9 credits, Letter graded (A, A-, B+, etc.)

May be repeated for credit.

EST 698: Practicum in Teaching

This course enables graduate students to gain experience in teaching and interacting with students enrolled in Technology, Policy, and Innovation courses. Students enrolled in EST 698 are expected to perform various teaching duties required by the course instructor, such as attending lectures, providing office hours, holding review/recitation session, proctoring exams, grading, etc.

Fall, 1-3 credits, S/U grading

May be repeated for credit.

EST 699: Dissertation Research on Campus

Dissertation research under direction of advisor.

1-9 credits, S/U grading

May be repeated for credit.

EST 700: Dissertation Research Off Campus - Domestic

Prerequisite: Must be advanced to candidacy (G%). Major portion of research will take place off-campus, but in the United States and/or U.S. provinces. Please note, Brookhaven National Labs and Cold Spring Harbor Lab are considered on-campus. All international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.

1-9 credits, S/U grading

May be repeated 1 times FOR credit.

EST 701: Dissertation Research Off Campus - International

Prerequisite: Must be advanced to candidacy (G5). Major portion of research will take place outside of the United States and/or U.S. provinces. Domestic students have the option of the health plan and may also enroll in MEDEX. International students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed. International students who are not in their home country are charged for the mandatory health insurance. If they are to be covered by another insurance plan they must file a waiver by the second week of classes.

The charge will only be removed if other plan is deemed comparable. All international students must receive clearance from an International Advisor.

1-9 credits, S/U grading

May be repeated for credit.