Mathematics Department

Chairperson
Mikhail Lyubich, Mathematics Building 5-116 (631) 632-8290

Graduate PhD Program Director
Claude LeBrun, Mathematics Building 3-108 (631) 632-8254

Graduate Professional Option Program Director
Marco Martens, Math Tower Room 4-113 (631) 632-4893

Graduate Secondary Teacher Option Program Director
Oleg Viro, Mathematics Building 5-110 (631) 632-8286

Graduate Secretary
Donna McWilliams, Mathematics Building P-143 (631) 632-8282

Degrees Awarded
M.A. in Mathematics 7-12; M.A. in Mathematics; Ph.D. in Mathematics

Description of the Mathematics Department

The Department of Mathematics, in the College of Arts and Sciences, offers degree programs leading to the M.A. in Mathematics (Secondary Teacher Option), the M.A. in Mathematics, and the Ph.D. in Mathematics. Several surveys, including U.S. News and World Report’s “America’s Best Graduate Schools,” have repeatedly ranked the department’s Ph.D. program among the top 20 in the nation, with top-five rankings for sub-disciplines such as Geometry.

The Department’s research and educational missions are considerably enhanced by its close collaboration with the Simons Center for Geometry and Physics and the Institute for Mathematical Sciences. While these two research institutes function as independent entities, their faculty members may, when appropriate, teach courses or supervise students under the department’s auspices.

Ph.D. Program (with Professional-Option M.A. Track)
The Mathematics Ph.D. program is internationally prominent and highly selective. It is primarily aimed at students preparing for a career in mathematical research and university teaching. However, some of our graduates have instead opted for highly successful careers in industry or government.

Students admitted to the Ph.D. program may also choose to be considered for our Professional Option MA degree. Even alone, a Master’s degree of this type qualifies the recipient for many careers, including teaching at the community-college level.

Master of Arts in Teaching Mathematics 7-12
This is a 42-credit master's program, administered by the School of Professional Development, designed for students who already have a bachelors degree in mathematics or the equivalent, and who wish to teach mathematics in grades 7-12. Individuals interested in this program should refer to the School of Professional Development (SPD) online Bulletin: www.stonybrook.edu/spd/graduate/matmath

Combined Bachelors/Masters (BS/MAT) in Teaching Mathematics 7-12
Individuals interested in this program should refer to the School of Professional Development (SPD) online Bulletin: www.stonybrook.edu/spd/graduate/matmath

The M.A. Program: Secondary Teacher Option
The Secondary Teacher Option is a 30 credit two-year, part-time program designed for secondary school mathematics teachers who are seeking permanent certification. The nine required courses in the program are given in the evenings and in the summer on a rotating basis; each required course is offered at least once every two and a half years.

Admission requirements of the Mathematics Department

Ph.D. Program (with Professional-Option M.A. Track)

In addition to the Graduate School requirements, the minimum requirements for admission to this program are:

A. A bachelor’s degree with a major in mathematics, or the equivalent.

B. Evidence that the student is likely to succeed. This must include three letters of recommendation from mathematicians (usually from present or former teachers). Other evidence submitted should include GRE scores and a personal background essay. The breadth and depth of mathematics courses taken, and performance, in these courses will also be carefully considered.

C. Non-native speakers of English must demonstrate an adequate command of the English language, as evidenced by an acceptable score on the TOEFL examination. A paper-based score of 550, computer-based score of 213, or an iBT-based score of 90 would be considered minimally satisfactory for this purpose. The TOEFL exam will be waived only for native speakers of English or, in rare cases, for students whose previous education was conducted almost entirely in English.

D. Acceptance by both the Department of Mathematics and the Graduate School.
The M.A. Program: Secondary Teacher Option

The Secondary Teacher Option is a 30 credit two-year, part-time program designed for secondary school mathematics teachers who are seeking permanent certification. The nine required courses in the program are given in the evenings and in the summer on a rotating basis; each required course is offered at least once every two and a half years.

In addition to the Graduate School requirements, the minimum requirements for admission to this program are:

A. A bachelor’s degree.

B. Two years of college-level mathematics, including one year of single variable calculus, one semester of linear algebra, and one additional semester of mathematics beyond single variable calculus.

C. Provisional New York State Certification for Teaching Mathematics, Grades 7-12.

D. A grade point average of at least 3.0 in all calculus and post-calculus mathematics courses.

E. Evidence that the student is likely to succeed: this usually consists of three letters of recommendation from former teachers or supervisors.

F. Acceptance by both the Department of Mathematics and the Graduate School.

Facilities of the Mathematics Department

Simons Center for Geometry and Physics

The Simons Center for Geometry and Physics was started in 2007 by a gift from the James and Marilyn Simons Foundation. This gift includes a new building for the Center, scheduled to be completed in September, 2010, on the campus of Stony Brook University. The building will be contiguous to and have direct connections to the Physics Building and the Mathematics Tower, the latter housing the Mathematics Department, the Institute for Mathematical Sciences, and the C.N. Yang Institute for Theoretical Physics. The Simons Foundation gift also provides an endowment to support the continuing operations of the center.

At full strength, the Center will have a faculty consisting of a director and six permanent members. As currently envisioned, the center will have 12 three-year postdoctoral type positions, called research assistant professorships, as well as a robust visitors' program with roughly 18 visitors in residence at any time. In addition, each year the Center will also host several workshops, which are concentrated activities in a specific area for shorter periods of time with outside invitees and speakers, as well as other special lectures and events.

As the name indicates, the intellectual focus of the Center is at the interface of mathematics, in particular geometry, and theoretical physics. The close proximity of the center building to the Physics Building and the Mathematics Tower is symbolic of the close intellectual and programmatic relationship of the Center to the Mathematics Department and Yang Institute for Theoretical Physics. The Center's activities will be coordinated with the activities in the other two units, and the Center's programs will typically involve significant participation by their faculty and students.

Director
Morgan, John, Ph.D. 1969, Rice University: Topology, algebraic geometry, three and four dimensional manifolds

Faculty
Douglas, Michael R., Ph.D. 1988, California Institute of Technology: String Theory, Conformal Field Theory

Requirements of the MA Degree in Mathematics

In addition to the requirements of the Graduate School, the following are required:

A. Completion of 30 credits in graduate courses approved by the department with a 3.0 overall grade point average.

B. Passing the comprehensive examination.

C. A nine-credit minor.

For students in the Secondary Teacher Option, the 30-credit requirement is ordinarily satisfied by the following courses: MAT 511 Fundamental Concepts of Mathematics, MAT 512 Algebra for Teachers, MAT 513/MAT 514 Analysis for Teachers I-II, MAT 515 Geometry for Teachers, MAT 516 Probability and Statistics for Teachers, MAT 517 Calculators and Computers for Teachers, MAT 518 Seminar in the Uses of Mathematics, MAT 519 Seminar in Mathematics Teaching; and a three-credit elective with a significant mathematical or pedagogical component. The comprehensive examination consists of the final examinations in MAT 512, MAT 513, MAT 514, and MAT 515. The minor requirement is met by the three courses MAT 516, MAT 517, and MAT 518.

For students in the Professional Option, the courses that satisfy the 30-credit requirement are MAT 530/MAT 531 Topology/Geometry I-II, MAT 534/MAT 535 Algebra I-II, MAT 542 Complex Analysis I, MAT 544 Analysis, MAT 550 Real Analysis I, and MAT 598 Teaching Practicum. Unless specifically exempted by the Director of Graduate Studies, all first year graduate students are required to take the core courses, MAT 530, MAT 531, MAT 534, MAT 535, MAT 542, MAT 544, and MAT 550 during their first-year; this requirement is automatically waived for students who have passed the comprehensive examination (see the Guide to Graduate Study for exemption guidelines).
In addition, students preparing for the doctoral program ordinarily take MAT 590 Problem Seminar. The comprehensive examination consists of the final examinations in MAT 530, MAT 531, MAT 534, MAT 535, MAT 542, MAT 544, and MAT 550, or the equivalent. The minor program consists of three courses in an allied area such as applied mathematics, statistics, computer science, or theoretical physics.

Requirements for the Ph.D. Degree

In addition to the requirements of the Graduate School, the following are required:

A. Passing the doctoral comprehensive examination.

B. Passing the doctoral preliminary examination.

C. Demonstrating proficiency in reading mathematics in two relevant foreign languages, usually French, German or Russian. Non-English-speaking international students can demonstrate their proficiency in one of these languages, in addition to their native language.

D. Advancement to candidacy.

E. Writing an acceptable dissertation.

F. Two consecutive semesters of full-time study.

Doctoral Comprehensive Examination

This examination, which is offered twice a year (just before the start of each semester), is designed to test mastery of the fundamentals of mathematics. This exam is based on the syllabi of the core courses; MAT 530, MAT 531, MAT 534, MAT 535, MAT 542, MAT 544, MAT 550. Students who transfer from graduate programs at other universities may, in some cases, be granted exemption from this requirement.

Doctoral Preliminary Examination

This examination is oral. Each student must take this examination no later than 1 ½ years after passing the comprehensive examination or receiving an exemption therefrom. The chairperson and one additional member of the examining committee are chosen by the student; one additional member is chosen by the program.

Professional Academic Training Program

All full-time graduate students are required to participate in this program, consisting of supervised teaching/tutoring at the lower undergraduate levels.

Faculty of the Mathematics Department

Professors

Anderson, Michael, Ph.D., 1981, University of California, Berkeley: Differential geometry, geometric analysis, mathematical physics.


Bishop, Christopher, Ph.D., 1987, University of Chicago: Complex analysis.

de Cataldo, Mark, Ph.D., 1995, University of Notre Dame: Higher dimensional geometry.

Ebin, David, Ph.D., 1967, Massachusetts Institute of Technology: Global analysis; mathematics of continuum mechanics; partial differential equations.


Glimm, James, Ph.D., 1959, Columbia University: Applied mathematics; numerical analysis; mathematical physics.

Hill, C. Denson, Ph.D., 1966, New York University: Partial differential equations; several complex variables.

Jones, Lowell, Ph.D., 1970, Yale University: Topology; geometry.

Lawson, H. Blaine, Jr., Ph.D., 1968, Stanford University: Differential geometry; topology; algebraic geometry.

LeBrun, Claude, Graduate Program Director, D.Phil., 1980, University of Oxford, England: Differential geometry; complex analysis; mathematical physics; algebraic geometry.

Lyubich, Mikhail, Director of Institute for Mathematical Sciences, Ph.D., 1983, Tashkent State University, Russia: Dynamical systems, Kleinian groups and their deformation spaces.

Michelsohn, Marie-Louise, Ph.D., 1974, University of Chicago: Differential geometry.

Milnor, John W., Co-Director of Institute for Mathematical Sciences, Ph.D., 1954, Princeton University: Dynamical systems; topology, geometry
Morgan, John, Director of Simons Center for Geometry and Physics, Ph.D., 1969, Rice University: Topology, algebraic geometry, three and four dimensional manifolds


Simons, James H., Ph.D., 1962, University of California, Berkeley: Functionals of Riemannian metrics and connections

Sullivan, Dennis, Ph.D., 1965, Princeton University: Dynamical systems; topology; geometry; partial differential equations, quantum topology

Takhtajan, Leon, Chairperson, Ph.D., 1975, Leningrad Branch of the Steklov Mathematical Institute, Russia: Mathematical physics and applications to complex and algebraic analysis

Viro, Oleg, Ph.D., 1974, Leningrad University: Geometry and topology

Associate Professors
Grushevsky, Samuel, Ph.D. 2002, Harvard University: Geometry, several complex variables

Kirillov Jr., Alexander, Undergraduate Program Director, Ph.D., 1995, Yale University: Representation theory; low dimensional topology; mathematical physics.

Martens, Marco, Ph.D., 1990, Delft University, The Netherlands: Dynamics

Movshev, Michael, Ph.D., 1997, University of Pennsylvania: Algebra

Starr, Jason, Ph.D., 2000, Harvard University: Algebraic geometry

Sutherland, Scott, Ph.D., 1989, Boston University: Dynamical systems; root-finding algorithms; computing.

Varolin, Dror, Ph.D., 1997, University of Wisconsin-Madison: Complex analysis and geometry.

Zinger, Aleksey, Ph.D., 2002, Massachusetts Institute of Technology: Symplectic topology, enumerative algebraic geometry.

Assistant Professors
Berger, Lisa, Ph.D., 2007, University of Arizona: Number Theory, Mathematics Education of Teachers

Chas, Moira, Ph.D., 1998, Universitat Autonoma de Barcelona: Geometric topology, dynamical systems

Kahn, Jeremy, Ph.D., 1995, University of California, Berkeley: Dynamical Systems, complex analysis

Kennedy, Nadia, Ed.D., 2005, Montclair State University: Mathematics Education

Khuri, Marcus, Ph.D., 2003, University of Pennsylvania: Differential geometry, Partial differential equations, and General relativity

Laza, Radu, Ph.D., 2005, Yale University: Algebraic geometry, several complex variables

Plamenevskaya, Olga, Undergraduate Program Associate Director, Ph.D., 2004, Harvard University: Contact and symplectic geometry, Low-dimensional topology

Schul, Raanan, Ph.D., 2004 Harvard University: Real analysis, geometric measure theory

James H. Simons Instructors
DeLand, Matthew, Ph.D., 2009, Columbia University: Algebraic geometry, algebra

Kamenova, Ljudmila, Ph.D., 2006: Massachusetts Institute of Technology: Complex geometry

Young, Andrew, Ph.D., 2008, Princeton University: Algebraic geometry, differential geometry, several complex variables

Adjuncts
Alexander, Douglas, MA, 2005, Stony Brook University: Mathematics Education

Andersen, Robert, MS, 1974, Adelphi University, NY: Mathematics Education

Bernhard, William, MA, 2000, Stony Brook University: Mathematics Education

Biondo, Barbara, P.D., 1985, C.W. Post College: Mathematics Education
Wiegand, Judy, MS., 1969, Polytechnic Institute of New York, Brooklyn: Hamilton graph theory, teacher education

Institute for Mathematical Sciences
Lyubich, Mikhail, Director, Ph.D., 1983, Tashkent State University, Russia: Dynamical systems.

Milnor, John W. \(^3\), Co-Director, Ph.D., 1954, Princeton University: Dynamical systems; topology, geometry.

Institute for Mathematical Sciences, Lecturers
Bowman, Joshua, Ph.D., 2009, Cornell University: Dynamical systems.

Brooks, Shimon, Ph.D., 2009, Princeton University: Quantum theory, dynamical systems, numbers theory.

Curry, Clinton, Ph.D., 2009, University of Alabama: Dynamical systems.

Donzelli, Fabrizio, Ph.D. 2009, University of Miami: Algebraic geometry, complex analysis, mathematical physics.

Lobb, Andrew, Ph.D., 2009, Harvard University: Low-dimensional topology.

1) Recipient of the State University President’s and Chancellor’s Award for Excellence in Teaching, 1990

2) Recipient of the State University President’s and Chancellor’s Award for Faculty Service, 2006

3) Distinguished Professor

4) Member, Institute for Mathematical Sciences

5) Member, Simons Center for Geometry and Physics

6) Joint appointment, Applied Mathematics and Statistics

NOTE: The course descriptions for this program can be found in the corresponding program PDF or at COURSE SEARCH.