MAT

Mathematics

MAT 511: Fundamental Concepts of Mathematics
Fundamental Concepts of Mathematics. Brief history of mathematics; sets, functions and logic; constructions of number systems, including their historical development; mathematical induction. The main focus of the course will be on the construction and writing of mathematical proofs. Fall, Spring, or Summer, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 512: Algebra for Teachers
Linear algebra, the algebra of polynomials, algebraic properties of the complex numbers, number fields, solutions of equations. Mathematical topics integrate the study of the historical development of algebra, including contributions from diverse cultures. Prerequisite: MAT 511 Semesters Offered: Fall, Spring, or Summer, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 513: Analysis for Teachers I
Topics in differential calculus, its foundations, and its applications. This course is designed for teachers and prospective teachers of advanced placement calculus. Mathematical topics integrate the study of the historical development of calculus, including contributions from diverse cultures. Prerequisite: MAT 511 Fall, Spring, or Summer, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 514: Analysis for Teachers II
Topics in calculus, its foundations, and its applications. Emphasis is on integration and on numerical techniques. This course is designed for teachers and prospective teachers of advanced placement calculus. Mathematical topics integrate the study of the historical development of calculus, including contributions from diverse cultures. Analysis for Teachers I is not a prerequisite for this course. Prerequisite: MAT 511 Fall, Spring, or Summer, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 515: Geometry for Teachers
A re-examination of elementary geometry using concepts from analysis and algebra. Mathematical topics integrate the study of the historical development of Euclidean and non-Euclidean geometries, including contributions from diverse cultures. Prerequisite: MAT 511 Fall, Spring, or Summer, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 516: Probability and Statistics for Teachers
A priori and empirical probabilities; conditional probability; mean and standard deviation; random variables; financial distributions; continuous distributions; sampling; estimation; decision making. Mathematical topics integrate the study of the historical development of statistics and probability, including contributions from diverse cultures. Prerequisite: MAT 511 Fall, Spring, or Summer, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 517: Calculators and Computers for Teachers
Calculators and Computers for teachers. Graphing calculators, programming, computing and curve sketching; Geometers Sketchpad or other computer based classroom tools; educational use of the world wide web. Fall, Spring, or Summer, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 518: Seminar on the Uses of Mathematics
This seminar explores the ways in which secondary school and elementary college mathematics are used in such diverse areas as psychology, sociology, political science, economics, business, engineering, physics, chemistry, biology, and medicine. Primarily for secondary school teachers of mathematics. Fall, Spring, or Summer, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 519: Seminar in Mathematics in Teaching and Learning
Seminars format. This course involves deliberative group inquiry - through reading, writing and intensive discussion - into mathematics teaching, learning and mathematics education research; analysis and design of cognitively demanding mathematical tasks; and analysis of students' mathematical thinking, written responses, and common misconceptions in the mathematics classroom. Each student completes an action research project focused on a topic selected with guidance from the instructor. 3 credits, Letter graded (A, A-, B+, etc.)

MAT 520: Geometry for Teachers II
Vector algebra on the plane and in the 3-space; area and volume of geometric figures; analytic geometry. Prerequisite: MAT 511 Spring, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 529: Basic Topology and Geometry (for Masters Program)
A broadly based introduction to topology and geometry, the mathematical theories of shape, form, and rigid structure. Topics include intuitive knot theory, lattices and tiling, non-Euclidean geometry, smooth curves and surfaces in Euclidean 3-space, open sets and continuity, combinatorial and algebraic invariants of spaces, higher dimensional spaces. There will be a required short paper on the fundamental group of a topological space or some similar topic. Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 530: Topology, Geometry I
Basic point set topology; connectedness, compactness, continuity, etc. Metric spaces, function spaces, and topological manifolds. Introduction to algebraic topology; fundamental group and covering space; homology; applications. Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 531: Topology, Geometry II

MAT 534: Algebra I
Groups: normal subgroups, quotient groups, Lagrange's theorem, class formula, finite p-groups and solvable groups, Sylow's theorems, finitely generated abelian groups. Rings and modules: subrings, fields, prime and maximal ideals, quotient rings, ID's, PID's, UFD's, polynomial rings, field of fractions, the Wedderburn theorem, Hilbert basis theorem, finitely generated modules over a PID. Vector spaces: basis, linear maps and matrices, dual spaces, determinants, eigenvalues and vectors, inner products, spectral theorem for normal operators. Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 535: Algebra II

Spring, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 536: Algebra III
Selections from the following topics: introductory algebraic number theory, introductory algebraic geometry, algebraic groups, cohomology of groups, homological algebra, advanced field theory and Galois theory, central simple algebras, representations of finite and compact groups.

Prerequisite: MAT 535
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 539: Algebraic Topology
Homology and cohomology groups, homotopy groups and the universal coefficient theorem, cup and cap products, Poincare duality, and introduction to spectral sequences.

Spring, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 540: Topology in Geometry and Algebra I
Cell complexes, algebraic and geometric definitions of homology, fundamental and higher homotopy groups, Hurewicz theorem, the universal coefficient theorem, cup and cap products, Poincare duality, and introduction to spectral sequences.

Spring, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 543: Complex Analysis II

Fall, 3 credits, Letter graded (A, A-, B+, etc.)

Spring, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 544: Real Analysis I
Ordinary differential equations; Banach and Hilbert spaces; inverse and implicit function theorems; Lebesgue measure; general measures and integrals; measurable functions; convergence theorems for integrals.

Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 545: Complex Geometry
Foundational material and techniques in complex algebraic and differential geometry: Review of basic results in several complex variables/analytic geometry, sheaves and cohomology of sheaves, complex vector bundles, Chern classes, positivity, Kaehler manifolds, projective manifolds, Hodge decomposition for Kaehler manifolds, Kodaira vanishing theorem, Hard Lefschetz Theorem, divisors and line bundles, Bertini's theorem, Lefschetz theorem on (1,1) classes, blowing up, Kodaira's embedding theorem.

Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 546: Differential Equations
Distributions and the Fourier transform; compact operators, Fredholm theory; pseudodifferential operators; Sobolev spaces; regularity theory for elliptic operators; Hodge theorem.

Prerequisite: MAT 544, Corequisite: MAT 550
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 550: Real Analysis II
Representations and decomposition theorems in measure theory; Fubini's theorem; L-p spaces; Fourier series; Laplace, heat and wave equations; open mapping and uniform boundedness theorems for Banach spaces; differentiation of the integral; change of variable of integration.

Prerequisite: MAT 544
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 551: Real Analysis III
Selections from the following topics. Partial differential equations in higher dimensions; Sobolev spaces, calculus of variations, characteristics, Cauchy problem, energy estimates, maximum principles, Harmonic analysis; singular integrals, Hausdorff measure, harmonic measure, Hardy spaces, Functional analysis; spectral theory, distributions, Banach algebras. Prerequisite: MAT 544, 550
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 552: Introduction to Lie Groups and Lie Algebras

Prerequisite: MAT 531, MAT 534
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 555: Introduction to Dynamic Systems
Fundamental themes of dynamic systems and applications to other areas. Topics may include the following: Poincare recurrence and Birkhoff Ergodic Theorem, Smale horseshow, and hyperbolicity, Geodesic flow on constant curvature surfaces, One-dimensional dynamics, Julia sets and the Mandelbrot set, Renormalization, rigidity and universality phenomena, Hamiltonian dynamics and integrability, Kolmogorov-Arnold-Moser Theory (overview), Homoclinic bifurcations and New house phenomenon. 3 credits. Offered in Spring. Prerequisites: MAT 530 and MAT 544.

3 credits, Letter graded (A, A-, B+, etc.)

MAT 560: Mathematical Physics I
Aimed at students affiliated with the RTG program, topics include: Classical field theory (Lagrangian and Hamiltonian), electromagnetism, special relativity, statistical mechanics and thermodynamics, quantum mechanics and quantum field theory.

3 credits, Letter graded (A, A-, B+, etc.)

MAT 561: Mathematical Physics II
Aimed at students affiliated with the RTG program, topics include: Classical field theory (lagrangian and Hamiltonian), electromagnetism, special relativity, statistical mechanics and thermodynamics, quantum mechanics and quantum field theory.

3 credits, Letter graded (A, A-, B+, etc.)

MAT 566: Differential Topology
Vector bundles, transversality, and characteristic classes. Further topics such as Morse theory, fixed point theory, and algebraic topology.
as imbeddings and immersions, intersection
teaching, and foliations.

Prerequisite: MAT 531
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 568: Differential Geometry
Connections, curvature, geodesics, parallelism,
and completeness. Riemannian manifolds,
geometry of sub-manifolds; method of integral
formulas; applications to global extrinsic
theorems. Riemannian curvature. Gauss-
Bonnet theorem, Hopf-Rinow theorem.

Prerequisite: MAT 531
Fall, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 569: Differential Geometry
First and second variation formulas, conjugate
points and Jacobi fields, comparison theory.
Curvature and fundamental group: spaces
of positive and of negative curvature, space
forms, Lie groups, homogeneous spaces,
and symmetric spaces. Different topics may
be covered depending on the choice of the
instructor.

Prerequisite: MAT 531, MAT 568
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

MAT 570: Concepts and Methods of
Quantum Mechanics
Mathematical methods of classical mechanics:
Lagrangean and Hamiltonian formulations,
conservation laws. Mathematical foundation
of quantum mechanics: Heisenberg and
Schrödinger representations, Stone-von
Neumann theorem. Examples of fundamental
quantum mechanical problems, representation
theory and spin. Feynman path integral
formalism and related Wiener theory of
integration, perturbation theory, semi-classical
approximation, fermion systems. Mathematical
applications.

Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 588: Introduction to Algebraic
Geometry
This course offers a systematic introduction to
algebraic geometry, from a modern, scheme-
theoretic perspective. Prerequisite: MAT
536, or permission of instructor. Familiarity
with material covered by MAT 545 would be
helpful, but is not required.

3 credits, S/U grading

MAT 589: Introduction to Algebraic
Geometry
This course offers a systematic introduction to
algebraic geometry, from a modern, scheme-
theoretic perspective. Prerequisite: MAT
536, or permission of instructor. Familiarity
with material covered by MAT 545 would be
helpful, but is not required.

3 credits, S/U grading

MAT 590: Problem Seminar
Analyze problems and explore supplementary
topics related to the core courses in the
Professional M.A. Option. Focus on
preparation for the doctoral comprehensive
examination.

Fall and Spring, 3 credits, S/U grading
May be repeated for credit.

MAT 598: Teaching Practicum
Seminar and workshop for new teaching
assistants.

Fall, 3 credits, S/U grading

MAT 599: M.A. Research
May be repeated for credit.

MAT 602: Topics in Algebra
Typical topics are drawn from group theory,
ring theory, representation theory of groups
and algebras, fields and commutative algebras,
homological algebra.

Prerequisite: Permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 603: Topics in Algebra
Typical topics are drawn from group theory,
ring theory, representation theory of groups
and algebras, fields and commutative algebra,
homological algebra.

Prerequisite: Permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 604: Topics in Algebra
Topics of current interest such as foliations,
surgery, singularities, group actions on
manifolds, and homotopy theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 605: Topics in Algebra
Topics of current interest such as foliations,
surgery, singularities, group actions on
manifolds, and homotopy theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 606: Topics in Algebra
Topics of current interest such as foliations,
surgery, singularities, group actions on
manifolds, and homotopy theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 607: Topics in Algebra
Topics of current interest such as foliations,
surgery, singularities, group actions on
manifolds, and homotopy theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 608: Topics in Number Theory
Typical topics are drawn from analytic number
theory, algebraic number theory, diophantine
equations, and transcendental number theory,
with indications of methods from algebra,
geometry, analysis, and logic.

Prerequisite: Permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 609: Topics in Number Theory
Typical topics are drawn from analytic number
time, algebraic number theory, diophantine
and transcendental number theory, with indications of methods from algebra,
geometry, analysis, and logic.

Prerequisite: Permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 610: Topics in Number Theory
Typical topics are drawn from analytic number
time, algebraic number theory, diophantine
and transcendental number theory, with indications of methods from algebra,
geometry, analysis, and logic.

Prerequisite: Permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 611: Topics in Number Theory
Typical topics are drawn from analytic number
time, algebraic number theory, diophantine
and transcendental number theory, with indications of methods from algebra,
geometry, analysis, and logic.

Prerequisite: Permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 612: Topics in Number Theory
Typical topics are drawn from analytic number
time, algebraic number theory, diophantine
and transcendental number theory, with indications of methods from algebra,
geometry, analysis, and logic.

Prerequisite: Permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 613: Topics in Number Theory
Typical topics are drawn from analytic number
time, algebraic number theory, diophantine
and transcendental number theory, with indications of methods from algebra,
geometry, analysis, and logic.

Prerequisite: Permission of instructor
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 614: Topics in Algebraic
Geometry
Typical topics are drawn from varieties and
schemes, algebraic curves, and their
arithmetics. Fall
3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 615: Topics in Algebraic
Geometry
Typical topics are drawn from varieties and
schemes, algebraic curves, and their
arithmetics. Fall
3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 620: Topics in Topology
Topics of current interest such as foliations,
surgery, singularities, group actions on
manifolds, and homotopy theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 621: Topics in Topology
Topics of current interest such as foliations,
surgery, singularities, group actions on
manifolds, and homotopy theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 622: Topics in Complex Analysis
Topics selected from Riemann surfaces,
quasiconformal mappings, several complex
variables, Fuchsian groups, Kleinian groups,
moduli of Riemann surfaces and Kleinian
groups, analytic spaces, singularities.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 623: Topics in Differential
Equations
Typical topics are hyperbolic or elliptic
systems, parabolic equations, spectral theory,
finite difference equations, Cauchy-Riemann equations and complex vector fields, equations with constant coefficients, solvability of linear equations, Fourier integral operators, nonlinear equations.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 633: Topics in Differential Equations
Typical topics are hyperbolic or elliptic systems, parabolic equations, spectral theory, finite difference equations, Cauchy-Riemann equations and complex vector fields, equations with constant coefficients, solvability of linear equations, Fourier integral operators, nonlinear equations.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 638: Topics in Real Analysis
Topics selected from functional analysis, harmonic analysis, Banach algebras, operator theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 639: Topics in Real Analysis
Topics selected from functional analysis, harmonic analysis, Banach algebras, operator theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 641: Topics in Lie Groups Theory
Typical topics are universal enveloping algebras; free, solvable and nilpotent Lie algebras; Lie theory and formal groups; root systems, Dynkin diagrams, classification and representations of complex semisimple Lie algebras; method of orbits; representations of non-compact Lie groups; loop groups.

Prerequisite: MAT 552
Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 644: Topics in Differential Geometry
Typical topics will be drawn from areas such as comparison theorems, pinching theorems, Morse theory, characteristic classes, minimal variations, Hodge theory, spectrum of the Laplacian, and geometry of general relativity.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

May be repeated for credit.

MAT 645: Topics in Differential Geometry
Typical topics will be drawn from areas such as comparison theorems, pinching theorems, Morse theory, characteristic classes, minimal variations, Hodge theory, spectrum of the Laplacian, and geometry of general relativity.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

May be repeated for credit.

MAT 648: Topics in Mathematical Physics
Typical topics are mathematical methods of classical and quantum mechanics; methods of functional integration and its applications; infinite-dimensional Lie algebras, quantum groups and representations; conformal field theories; super-symmetry; topological quantum field theories; gauge theories and geometry in four-dimensions; supergravity and mirror symmetry; strings.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 649: Topics in Mathematical Physics
Typical topics are mathematical methods of classical and quantum mechanics; methods of functional integration and its applications; infinite-dimensional Lie algebras, quantum groups and representations; conformal field theories; super-symmetry; topological quantum field theories; gauge theories and geometry in four-dimensions; supergravity and mirror symmetry; strings.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

May be repeated for credit.

MAT 655: Topics in Dynamical Systems
Typical topics are drawn from holomorphic and low-dimensional dynamics, hyperbolic dynamics, theory of Hamiltonian systems, ergodic theory, and bifurcation theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

May be repeated for credit.

MAT 660: Topics in Dynamical Systems
Typical topics are drawn from holomorphic and low-dimensional dynamics, hyperbolic dynamics, theory of Hamiltonian systems, ergodic theory, and bifurcation theory.

Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)

May be repeated for credit.

MAT 662: Advanced Topics in Algebra
Prerequisite: Permission of instructor
MAT 662 - Fall, MAT 663 - Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 663: Advanced Topics in Algebra
Prerequisite: Permission of instructor
MAT 662 - Fall, MAT 663 - Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 666: Advanced Topics in Topology
Prerequisite: Permission of instructor
MAT 666 - Fall, MAT 667 - Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 667: Advanced Topics in Topology
Prerequisite: Permission of instructor
MAT 666 - Fall, MAT 667 - Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 670: Advanced Topics in Complex Analysis
Prerequisite: Permission of instructor
MAT 670 - Fall, MAT 671 - Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 671: Advanced Topics in Complex Analysis
Prerequisite: Permission of instructor
MAT 670 - Fall, MAT 671 - Spring, 3 credits, Letter graded (A, A-, B+,

May be repeated for credit.

MAT 674: Advanced Topics in Differential Equations
Prerequisite: Permission of instructor
MAT 674 - Fall, MAT 675 - Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 675: Advanced Topics in Differential Equations
Prerequisite: Permission of instructor
MAT 674 - Fall, MAT 675 - Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 678: Advanced Topics in Real Analysis
Prerequisite: Permission of instructor
MAT 678 - Fall, MAT 679 - Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 679: Advanced Topics in Real Analysis
Prerequisite: Permission of instructor
MAT 678 - Fall, MAT 679 - Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 682: Advanced Topics in Differential Geometry
Prerequisite: Permission of instructor
MAT 682 - Fall, MAT 683 - Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 683: Advanced Topics in Differential Geometry
Prerequisite: Permission of instructor
MAT 682 - Fall, MAT 683 - Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 685: Advanced Topics in Dynamics
An advanced topic selected from holomorphic and low-dimensional dynamics, hyperbolic dynamics, KAM theory, smooth ergodic theory, geodesic flows, bifurcation theory.
Prerequisite: Permission of instructor
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 690: Advanced topics in algebraic geometry
Fall, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 691: Advanced topics in algebraic geometry
Spring, 3 credits, Letter graded (A, A-, B+, etc.)
May be repeated for credit.

MAT 696: Mathematics Seminar
May be repeated for credit.

MAT 697: Mathematics Colloquium
May be repeated for credit.

MAT 698: Independent Study
May be repeated for credit.

MAT 699: Dissertation Research on Campus
Dissertation research under direction of advisor. Prerequisite: Advancement to candidacy (G5). Major portion of research must take place on SBU campus, at Cold Spring Harbor, or at the Brookhaven National Lab.
Fall, Spring, and Summer, 1-9 credits, S/U grading
May be repeated for credit.

MAT 700: Dissertation Research off Campus - Domestic
Prerequisite: Must be advanced to candidacy (G5). Major portion of research will take place off-campus, but in the United States and/or U.S. provinces. Please note, Brookhaven National Labs and the Cold Spring Harbor Lab are considered on-campus. All international students must enroll in one of the graduate student insurance plans and should be advised by an International Advisor.
Fall, Spring, 1-9 credits, S/U grading
May be repeated for credit.

MAT 701: Dissertation Research off Campus - International
Prerequisite: Must be advanced to candidacy (G5). Major portion of research will take place outside of the United States and/or U.S. provinces. Domestic students have the option of the health plan and may also enroll in MEDEX. International students who are in their home country are not covered by mandatory health plan and must contact the Insurance Office for the insurance charge to be removed. International students who are not in their home country are charged for the mandatory health insurance. If they are to be covered by another insurance plan they must file a waiver be second week of classes. The charge will only be removed if other plan is deemed comparable.
All international students must received clearance from an International Advisor.
Fall, Spring, 1-9 credits, S/U grading
May be repeated for credit.

MAT 800: FULL TIME SUMMER RES
May be repeated for credit.